https://psi-team.com
800-223-1468
Piping Specialties Inc. (PSI) is one of the northeast's largest suppliers of valves; process controls/instrumentation, and engineered mechanical specialties. Industries served: Power Generation, Pulp/Paper, HVAC, Water/Wastewater, Food/Beverage, Life Sciences, Chemical/ Process, Semiconductor. For more information visit PSI-Team.com or call 800-223-1468.
Radar (Radio Detection and Ranging) is a system that uses electromagnetic waves to identify the range, altitude, direction, or speed of both moving and fixed objects such as aircraft, ships, motor vehicles, weather formations, and terrain. It transmits a signal, bouncing off the target and returning to the radar system. By analyzing the reflected signal, the radar can determine various parameters about the target.
When discussing FMCW, we are talking about a specific type of radar signal. Here's how FMCW works:
The benefit of FMCW is that the frequency change provides a way to determine the range (distance to an object). There's a delay when the transmitted wave bounces off an object and returns. During this time, the transmitted wave's frequency has changed. By comparing the received wave's frequency to the current transmitted frequency, the radar system can determine how long it took for the wave to return and thus calculate the distance to the object.
FMCW radar is handy because it can be more compact, requires less peak transmit power (because it's continuous wave and not pulsed), and can provide range and speed information simultaneously.
"Open air" in the context of radar transmitters usually refers to systems that operate without waveguides or enclosed transmission mediums. Instead, they transmit their signals directly into the environment. These systems are used in various applications, including vehicle radars (like those used in adaptive cruise control or autonomous vehicles), weather radars, and more.
An open-air radar transmitter that uses FMCW is a radar system that transmits a continuous wave signal directly into the environment, modulating the signal's frequency over time. By analyzing the frequency shift of the returned signal relative to the transmitted signal, the radar can determine the range to the reflecting object. This technology is widely utilized due to its efficiency, compactness, and ability to provide detailed information about detected objects.
Drexelbrook's open-air radar products deliver exceptional resolution and accuracy tailored for demanding applications. These instruments harness FMCW (Frequency Modulated Continuous Wave) technology, ensuring a powerful signal at the measurement surface. This robustness guarantees optimal return signals, even when measuring agitated liquids.
A Drexelbrook radar level transmitter stands out as the optimal choice for applications that necessitate non-contact technology.
For more information about Drexelbrook level instruments in New England, contact Piping Specialties / PSI Controls. Call 800-223-1468 or visit https://psi-team.com.
Commonly, valves are operated with handwheels or levers, although some must be regularly opened, closed, or throttled. In certain conditions, it is not always practical to position valves manually; hence actuators are employed instead of hand wheels or levers.
An actuator is a mechanism that moves or regulates a device, such as a valve. Actuators decrease the requirement for people to operate each valve manually. Valves using actuators can remotely control valve position, particularly crucial in applications where valves open and close or modulate fast and precisely.
Pneumatic, hydraulic, and electrical actuators are the three fundamental types.
Actuators position valves in response to controller signals and can be positioned rapidly and precisely to accommodate frequent flow variations. The instrumentation systems that monitor and respond to fluctuations in plant processes include controllers. Controllers receive input from other instrumentation system components, compare that input to a setpoint, and provide a corrective signal to bring the process variable (such as temperature, pressure, level, or flow).
You have a control valve when actuators pair with flow-limiting or flow-regulating valves. Generally speaking, control valves automatically restrict flow to provide accurate flow to a process to maintain product quality and safety.
Control valves can be linear, where the stem moves the valve disk up and down like globe valves, or rotational. Rotary control valves include butterfly valves, which open or close with a 90-degree rotation. The pneumatic diaphragm and electric actuators are the most prevalent on linear and rotational control valves.
Some valves require long stem travel or substantial force to change position. A piston actuator's higher torque is preferable to diaphragm actuators in these situations. Examples of piston actuators are rack and pinion and scotch-yoke designs.
Single-acting piston actuators control the air pressure on one side of a piston, and with higher air pressure, the piston moves within the cylinder and turns the valve. The air on the opposite side of the piston exits the cylinder via an air vent. With decreased air pressure, the spring expands, causing the piston to move in the opposite direction.
If air pressure falls below a predetermined threshold or is lost, the spring will push the piston to the desired position, referred to as the "fail" position (open or closed).
A double-acting piston actuator lacks a spring and has air supply ports on both ends of the cylinder. Increasing air pressure to the supply port moves the valve in one direction. Higher pressure air entering from the opposite supply port pushes the valve in the opposite direction. Filling the cylinder with air and releasing air from the cylinder is regulated by a device known as a positioner.
Typically, the control of pneumatic actuators occurs from air signals from a controller. Some actuators react directly from a controller, for instance, a 3-15 PSI controller pneumatic output. Sometimes, a controller signal alone cannot counteract friction or fluid pressure. This situation requires a separate, higher-pressure air supply and modulating it with a pneumatic or electro-pneumatic positioner. These devices regulate a higher-pressure air supply to ensure that an actuator has enough torque to position a valve accurately. The positioner responds to a change in the controller's air, voltage, or current signal and proportions the higher pressure air to the actuator. Connecting the actuator stem to the positioner is a mechanical linkage. This mechanical connection is also known as a feedback connection. As the actuator stem moves up or down, or rotationally, the link likewise moves. The location of the connection informs the positioner when sufficient movement coincides with the controller's air signal. The controller's signal transmits to the positioner instead directly to the actuator, and the positioner regulates the air supply provided to the actuator.
Like other process components, actuators are prone to mechanical issues. Since actuator issues can negatively impact the operation of a process, it is essential to be able to recognize actuator issues when they occur. Frequently, an operator can notice an actuator fault by comparing the valve position indication to the position specified by the controller. For instance, if the position indicator shows the valve closed, but the flow indicator on the controller indicates that flow is still passing through the valve, the valve seat and disc are likely worn, enabling leakage through the valve.
Because there are so many different styles and designs of actuators, positioners, and valves and so many industrial applications, the combination possibility matrix is vast. You must discuss your application with a knowledgeable, experienced valve expert. The success of your project in terms of product quality, system cost, maintenance, and safety depends upon it.
The Reotemp TDS pressure transmitter and switch with display features include 0.25% accuracy, display, and electrical connections are independently rotatable 335°/343°, analog outputs switchable between 4-20ma or voltage, rugged construction, with protection from shock, over-range, and over-voltage. Additionally, the TSDS calibration range is adjustable and provides excellent long-term stability.
For more information on Reotemp products in New England, contact PSI Controls / Piping Specialties. Call 800-223-1468 or visit https://psi-team.com.
The Drexelbrook Impulse is a guided wave radar (TDR) that measures all liquids and slurries' overall level and other volumetric measures. When competitive water sensors fail, the Impulse continues to provide accurate values.
The Drexelbrook Impulse is a two-wire guided wave radar that uses field-proven TDR level (Time Domain Reflectometry) technology to produce accurate Total Level, Distance, and Volumetric outputs on all liquids and slurries.
The Impulse handles even the most challenging level measuring applications. It will continue to give dependable and accurate measurements even in the presence of disturbances such as agitated or uneven surfaces, foam, or probe coating. Changes in the density and dielectric characteristics, dusts, mist, and turbulence do not affect it. When other water level sensors fail, the Impulse continues to measure.
This water level sensor is a perfect replacement for costly mechanical dispenser systems, with a wide range of probe types and material possibilities for various applications.
This guided wave radar is simple to use for any user due to its simple navigation, push-button setups, and HART connections. It only takes a few minutes to install. Choose your level measuring type and language, and the Impulse is ready to use.
The Impulse guided wave radar is intrinsically safe, explosion-proof, and non-incendive, and it does not require calibration or level changes.
Additionally, Drexelbrook recently introduced an enlarged coaxial sensor for The Impulse GWR. The new 1.66" (42mm) diameter probe provides reliable accuracy within high viscosity liquids. The new enlarged coaxial sensor option for The Impulse GWR allows the material to flow off the sensor easily when used with viscous fluids.
Piping Specialties / PSI Controls
https://psi-team.com
800-223-1468
Piping Specialties, Inc. was created in 1975 to provide industrial users in the Northeast with specialty valves and mechanical products and unsurpassed customer service. Piping Specialties' customer base and product offerings have grown steadily and sustainably over the years. PSI Controls provides system design, sales, and service of process controls and instrumentation. PSI Controls offer a broad range of engineering expertise and experience in applying automated valves and process instrumentation in the most demanding applications.
CPV’s flagship O-SEAL® valves have been the industry’s standard-bearer for bubble-tight performance and robust longevity in high pressure applications. All O-SEAL® valves provide pressure ratings up to 6000 PSI, with an optional vacuum service available. They provide superior bubble-tight performance, even with elusive gases like hydrogen and helium, and are resistant to debris and seat damage.
This application takes place at a large power plant well known for its "Green Approach" and it's commitment to ensuring a clean and healthy atmosphere in and around the plant.
The branched sewer system of the power plant requires instant maintenance and control. The plant uses water to operate the turbine. This water and other wastes move to the city’s wastewater treatment plant through the sewage system.
Some of the sewers are dispersed in remote locations around the plant, making it difficult for personal maintenance personnel to approach and repair damage on time. Plant technicians were looking for a solution to control the sewers better and avoid cases where wastewater might overflow.
The sewage pool readings had to be transmitted to the central DCS because the sewage system connects to a central control room. The plant needed a 24/7 watch and an on-site guard to gain maximum control over those sewers.
Technicians also stressed that wastewater flooding was inevitable because it takes time for the equipment to handle blockages. This flooding has caused severe damage to the environment. It was essential to control the wastewater level in the sewers to avoid cases such as these from reappearing.
After a lengthy examination of several possibilities, the plant decided to install two Drexelbrook USonic systems in its sewage pools. The ability of USonic to produce non-contact, continuous, and accurate readings of the water level in the pools gave the engineers of the plant a clear picture of the pools' status.
Its compact size and integral construction simplify its installation, offering an efficient solution in no time at all. The USonic had no problem providing 12ft water level readings with a measurement range of up to 30 ft. It can map obstacles in the pool and memorize interfering signals with its scan distance function.
The USonic was linked to the central control system via 4-20mA, allowing the plant engineers to control the water level in the sewers constantly. The engineers know that the sewers would maintain the correct water level, and the system would be alerted in an emergency.
Summary
The two USonic systems installed in the power plant give complete control over the sewers' water level to the plant's engineers. The systems' ability to display continuous level readings around the clock improved maintenance crews handle the sewage system.
To detect sudden blockages and avoid environmental damage on time, they can now save time. The plant received an immediate return on investment due to its compact size and reduced price.
Cash Valve is a leading manufacturer of pressure regulating and back pressure valves offering products for steam, air/gas, liquid, and cryogenic applications. Products range in size from 1/8" - 2" for threaded NPT connections and up through 6 inches for flanged configurations. Temperatures range between cryogenic up through 800°F, and materials of construction are offered with iron, brass, bronze, carbon and stainless steel depending on your application.
For more information about Cash Valve, contact Piping Specialties, Inc. by calling 800-223-1468 or by visiting their web site at https://psi-team.com.
Liquid product pipelines must be protected from liquid surges. Surges are caused by pump failure, rapid block valve closing, non-return check valve hard-shutting, emergency shutdown of a tank or loading system, or even a pump coming on or tripping. The magnitude of surge pressures varies, some virtually undetectable to those severe enough to cause significant damage. These propagating waves, either increasing or decreasing rapidly, are commonly known as a transient hydraulic surge of water hammer that can cause severe damage to liquid product pipelines, vessels, flanges, valving, and associated equipment.
The Flow Safe SurgeFlow series has been developed exclusively for liquid surge protection. These valves are extremely simple and 100% reliable. The dome cavity volume on top of the main valve piston is filled with nitrogen gas to affect the valve's proper set pressure. Dome gas pressure is set according to the characteristic piston seat-to-seal area ratio for the given valve size. This dome load forces the main valve into a closed position using a soft elastomer seat, providing a 100% tight shut-off. When surge pressure is sensed, the SurgeFlow valve piston opens immediately as the liquid fluid force acting under the piston overcomes the force from the dome gas working on the top. The piston continues to lift in proportion to the pressure surge, slightly compressing the dome gas. The closing cycle responds directly to pressure decay in the piping upstream of the SurgeFlow surge relief valve.
SurgeFlow series valves are designed for accurate and repeatable performance. They will handle both minimum and maximum surge cases when called upon to relieve. Flow Safe suggests all surge relief valves be located nearest the point where maximum pressure can occur in the main pipeline for optimal safety purposes.
For more information about Flow Safe products in New England, contact Piping Specialties. Call them at 800-223-1468, or visit their website at https://psi-team.com.
Vaisala K-PATENTS® Sanitary Process Refractometers PR-43-AC for hygienic installations in small pipe line sizes of 2.5 inch and smaller; PR-43-AP for hygienic installations in large pipes, tanks, cookers, crystallizers and kettles and for higher temperatures up to 150°C (300 °F); and the PR-43-APT for flush mounting installations in cookers, cooling crystallizers and other vessels that have scrapers or mixers.
Extraction, evaporation, brewing, distilling, sugar dissolving, blending, filling. Alcohol, rum, whiskey, brandy, vodka, molasses, liquors, cider, alcoholic beverages, pre-mixed liquors. Beer and malt beverages, wort, cut beer, root beer. Juices, blended vegetable and fruit juices and nectars, still drinks, vegetable and juice concentrates, iced tea and coffee, instant coffee and tea. Soft drinks, energy and sport drinks, beverage base. Wines, grape must.
The Sanitary refractometer PR-43-A is Sanitary 3-A approved to meet the highest hygiene requirements of food production. The 3-A Symbol assures that the Sanitary Refractometer
PR-43-A conforms to 3-A Sanitary Standard Number 46-04 for Refractometers and Energy-Absorbing Optical Sensors for Milk and Milk Products and it has passed the independent Third Party Verification inspection for 3-A Symbol authorization.
For more information about Vaisala K-PATENTS products in New New England, contact Piping Specialties, Inc. / PSI Controls. Call them at 800-223-1468 or visit their web site at https://psi-team.com.