Showing posts with label New York. Show all posts
Showing posts with label New York. Show all posts

From Food Processing to HVAC: The Versatile Applications of Industrial Bi-Metal Thermometers

The Versatile Applications of Industrial Bi-Metal Thermometers

The industrial bi-metal thermometer ensures the smooth operation and safety of various industrial and commercial processes. This versatile temperature measuring device has proven its value time and time again, thanks to its robust construction, reliable performance, and wide range of applications. The importance of the bi-metal thermometer is proven, as it provides accurate temperature readings for maintaining optimal conditions in numerous settings.

One of the primary advantages of the industrial bimetal thermometer is its durability. Bimetal thermometers use high-quality materials and can withstand harsh environments and extreme temperatures, making them ideal for use in demanding industrial settings. The rugged design ensures that the thermometer remains accurate and functional despite vibrations, shocks, and other potentially damaging factors. This durability translates to long-term reliability, reducing the need for frequent replacements and minimizing downtime.

Accuracy is another key aspect that highlights the value of industrial bi-metal thermometers. These devices utilize the principle of thermal expansion, where two dissimilar metals with different coefficients of thermal expansion are bonded together. As the temperature changes, the bi-metal strip coils or uncoils, causing the pointer to move and indicate the corresponding temperature on a calibrated scale. This simple yet effective mechanism allows for precise temperature measurements, typically within a tolerance of ±1% of the full scale. Accurate temperature readings are critical in industries such as food processing, chemical manufacturing, and HVAC systems, where even slight deviations can lead to product quality issues or safety hazards. With our industrial bi-metal thermometers, you can be reassured of the precision of your temperature measurements, ensuring the safety and quality of your processes.

The versatility of industrial bi-metal thermometers further emphasizes their importance. These thermometers come in a wide range of sizes, stem lengths, and temperature ranges, making them suitable for a diverse array of applications. Whether it's monitoring the temperature of a storage tank, ensuring proper heat treatment of materials, or controlling the temperature of a refrigeration system, bi-metal thermometers can be easily integrated into various processes. They can be installed in thermowells, which protect the thermometer stem and allow for easy replacement without interrupting the process. Additionally, bi-metal thermometers are available with different mounting options, such as back-connected, bottom-connected, or adjustable angle, enabling flexibility in installation and positioning. With our industrial bi-metal thermometers, you have the power to adapt to any temperature monitoring needs, enhancing the efficiency and effectiveness of your operations.

Industrial bi-metal thermometers also offer excellent readability, essential for quick and accurate temperature monitoring. The clear, easy-to-read dial face features bold graduation marks and numbers, allowing operators to discern the temperature at a glance easily. Some models even incorporate a magnifying lens or a red pointer for enhanced visibility. Quickly and accurately reading temperature values contributes to efficient process control and timely decision-making.

REOTEMP, a leading manufacturer of temperature measurement instruments, offers a comprehensive range of industrial bi-metal thermometers designed to meet the demanding requirements of various industries. With a commitment to quality and reliability, REOTEMP's bi-metal thermometers are constructed using premium materials and undergo rigorous testing to ensure accuracy and durability. Their extensive product line includes thermometers suitable for a wide range of temperature spans, stem lengths, and mounting configurations, catering to the specific needs of different applications. Whether for food processing, chemical manufacturing, or HVAC systems, REOTEMP's bi-metal thermometers provide accurate and dependable temperature measurements, making them a trusted choice for industrial and commercial users.

Piping Specialties / PSI Controls
https://psi-team.com
800-223-1468

Industrial Open Air Radar Transmitters Powered by FMCW Technology

Industrial Open Air Radar Transmitters Powered by FMCW Technology

Basic Understanding of Radar


Radar (Radio Detection and Ranging) is a system that uses electromagnetic waves to identify the range, altitude, direction, or speed of both moving and fixed objects such as aircraft, ships, motor vehicles, weather formations, and terrain. It transmits a signal, bouncing off the target and returning to the radar system. By analyzing the reflected signal, the radar can determine various parameters about the target.


FMCW (Frequency Modulated Continuous Wave)


When discussing FMCW, we are talking about a specific type of radar signal. Here's how FMCW works:


  1. Continuous Wave (CW): Traditional radar systems emit a brief pulse of radio energy and then wait for that pulse to reflect off an object and return. In contrast, Continuous Wave radar emits a constant signal or wave.
  2. Frequency Modulation (FM): In FMCW radar, the frequency of the continuous wave signal is varied or modulated over time. This can be done linearly, where the frequency increases or decreases at a constant rate or in other patterns.


The benefit of FMCW is that the frequency change provides a way to determine the range (distance to an object). There's a delay when the transmitted wave bounces off an object and returns. During this time, the transmitted wave's frequency has changed. By comparing the received wave's frequency to the current transmitted frequency, the radar system can determine how long it took for the wave to return and thus calculate the distance to the object.


FMCW radar is handy because it can be more compact, requires less peak transmit power (because it's continuous wave and not pulsed), and can provide range and speed information simultaneously.


Open Air Radar Transmitters


"Open air" in the context of radar transmitters usually refers to systems that operate without waveguides or enclosed transmission mediums. Instead, they transmit their signals directly into the environment. These systems are used in various applications, including vehicle radars (like those used in adaptive cruise control or autonomous vehicles), weather radars, and more.


Summary:


An open-air radar transmitter that uses FMCW is a radar system that transmits a continuous wave signal directly into the environment, modulating the signal's frequency over time. By analyzing the frequency shift of the returned signal relative to the transmitted signal, the radar can determine the range to the reflecting object. This technology is widely utilized due to its efficiency, compactness, and ability to provide detailed information about detected objects.


Drexelbrook's open-air radar products deliver exceptional resolution and accuracy tailored for demanding applications. These instruments harness FMCW (Frequency Modulated Continuous Wave) technology, ensuring a powerful signal at the measurement surface. This robustness guarantees optimal return signals, even when measuring agitated liquids.


A Drexelbrook radar level transmitter stands out as the optimal choice for applications that necessitate non-contact technology.


For more information about Drexelbrook level instruments in New England, contact Piping Specialties / PSI Controls. Call 800-223-1468 or visit https://psi-team.com.

Advanced Water Level Monitoring in Sewage Pools

Advanced Water Level Monitoring in Sewage Pools

The complex sewage system of a power plant necessitates immediate maintenance and management. The water utilized for operating turbines and other waste materials runs through the sewage system, and ultimately to the municipal wastewater treatment facility.

Some treatment pools are located in isolated areas around the plant, making it challenging for maintenance staff to access and repair damage promptly. Plant maintenance personnel continually look for ways to more effectively manage the pools and avoid situations where wastewater could overflow.

With the sewage system linked to a central control room, data from each sewage pool has to be transmitted to the primary Distributed Control System (DCS). To achieve optimal management of the sewers, continuous monitoring and attendants are usually necessary.

Technicians understand that sewer blockages inevitably lead to wastewater flooding due to the time required for the equipment to address the backup. This flooding results in significant damage to the surrounding area. Hence, it is crucial to regulate the wastewater level in the pools to prevent such incidents from occurring.

An outstanding solution for this problem is to install two Drexelbrook USonic continuous level transmitters to monitor level in the sewage pools. The USonic's capability to deliver contactless, continuous, and precise water level readings in the pools provide engineers with a comprehensive understanding of the pools' condition. The device's compact size and integral design facilitate easy installation, enabling a quick and efficient solution. With a measuring range of up to 30 feet, the USonic effortlessly provides water level readings of the 12-foot-high sewage pools. Its scan distance function can identify obstacles in the pool and record interfering signals. The USonic connects to the central control system via a 4-20mA interface, granting the engineers constant oversight of the water levels in the sewers, ensuring that the sewers would maintain the appropriate water level and the system would receive a notification in the event of an emergency.

For more information about the use of Drexelbrook USonic level transmitters in New England, contact:

Piping Specialties / PSI Controls
800-223-1468

The Role of Metal Expansion Joints

Metal Expansion Joints

Expansion joints, also known as bellows or compensators, are flexible connectors that are used in process and HVAC piping systems to absorb movements, such as thermal expansion and contraction, vibration, and misalignment. They are designed to prevent damage to the piping system, equipment, and surrounding structures by allowing for the movement and stress that occurs within the system.

There are several types of expansion joints, including metallic, non-metallic, and fabric. Metallic expansion joints are made of metal bellows and are typically used in high-pressure and high-temperature applications, as well as in applications that require a high degree of corrosion resistance. These expansion joints are typically made of stainless steel, but they can also be made of other metals such as Inconel, Monel, and Hastelloy.

The main function of metallic expansion joints is to provide flexibility in the piping system. They do this by allowing for movement in three main ways:
  • Lateral movement: Metallic expansion joints can accommodate lateral movement, which is movement in a side-to-side direction. This is important in systems that are subjected to thermal expansion and contraction, as the pipes will expand and contract due to temperature changes.
  • Angular movement: Metallic expansion joints can also accommodate angular movement, which is movement in a rotational direction. This is important in systems that are subjected to vibration, as the pipes will vibrate due to the flow of fluid or gas.
  • Axial movement: Metallic expansion joints can also accommodate axial movement, which is movement in a back-and-forth direction. This is important in systems that are subjected to misalignment, as the pipes may not be perfectly aligned.
  • In addition to providing flexibility, metallic expansion joints also help to reduce noise and vibration, and they can protect against the effects of corrosion, erosion, and abrasion. They are often used in a variety of industries, including power generation, petrochemical, pharmaceutical, and food and beverage.
If you'd like to discuss applying metal expansion joints in your application, contact:

Piping Specialties, Inc.
800-223-1468

Cryogenic Ball Valves

Cryogenic Ball Valves

Cryogenic ball valves are a type of valve that is designed to function at extremely low temperatures, typically below -150°C. They are used in a variety of applications where low temperature fluids need to be controlled, such as in the storage, transport, and processing of cryogenic gases, such as liquid nitrogen, oxygen, and argon.

Cryogenic ball valves are equipped with special materials and features that enable them to operate effectively at such low temperatures. For example, the body of the valve may be made from materials such as stainless steel or aluminum that have low temperature properties, and the valve may be equipped with a special insulation material to prevent heat transfer from the environment to the valve. The ball and seat of the valve may also be made from materials such as tungsten carbide or ceramic that can withstand extreme cold and wear.

Cryogenic ball valves are used in a variety of industries, including chemical, petrochemical, oil and gas, and food processing. They are commonly found in cryogenic storage tanks, pipelines, and processing equipment. They are also used in research and development facilities, medical facilities, and other industrial settings where low temperature fluids need to be controlled.

Cryogenic ball valves are used in a variety of applications that involve the handling of materials at extremely low temperatures. Some common applications for cryogenic ball valves include:
  • LNG (Liquefied Natural Gas) storage and transfer: Cryogenic ball valves are used to control the flow of LNG in storage tanks and transfer lines.
  • Cryogenic tanks and vessels: Cryogenic ball valves are used to control the flow of cryogenic fluids in tanks and vessels used for storage and transportation.
  • Refrigeration and air conditioning: Cryogenic ball valves are used in refrigeration and air conditioning systems to control the flow of refrigerants and other coolants.
  • Industrial gases: Cryogenic ball valves are used in the production, storage, and distribution of industrial gases such as oxygen, nitrogen, and argon.
  • Chemical and petrochemical processing: Cryogenic ball valves are used in the production and transportation of chemical and petrochemical products that require low temperatures for processing or storage.
  • Aerospace and defense: Cryogenic ball valves are used in aerospace and defense applications to control the flow of cryogenic fluids in satellites, rockets, and other space vehicles.
Piping Specialties will assist you in applying the right ball valve for your cryogenic application. Call them at 800-223-1468 or visit https://psi-team.com.

Control Valves, Actuators, and Positioners

Control Valves, Actuators, and Positioners

Valves regulate fluid flow to provide accurate control and safety in any given process system, and methods of adjusting valve position are always required.


Commonly, valves are operated with handwheels or levers, although some must be regularly opened, closed, or throttled. In certain conditions, it is not always practical to position valves manually; hence actuators are employed instead of hand wheels or levers. 


An actuator is a mechanism that moves or regulates a device, such as a valve. Actuators decrease the requirement for people to operate each valve manually. Valves using actuators can remotely control valve position, particularly crucial in applications where valves open and close or modulate fast and precisely. 


Pneumatic, hydraulic, and electrical actuators are the three fundamental types. 


  1. Pneumatic actuators employ air pressure to generate motion and are probably the most prevalent type of actuator utilized in process systems. 
  2. Actuators powered by a pressurized liquid, such as hydraulic fluid, are called hydraulic actuators. Typically, hydraulic actuators of the same size produce more torque than pneumatic actuators. 
  3. Electric actuators generate motion using electricity. Actuators usually belong to two broad categories: solenoid or motor-driven actuators. 


Actuators position valves in response to controller signals and can be positioned rapidly and precisely to accommodate frequent flow variations. The instrumentation systems that monitor and respond to fluctuations in plant processes include controllers. Controllers receive input from other instrumentation system components, compare that input to a setpoint, and provide a corrective signal to bring the process variable (such as temperature, pressure, level, or flow). 


You have a control valve when actuators pair with flow-limiting or flow-regulating valves. Generally speaking, control valves automatically restrict flow to provide accurate flow to a process to maintain product quality and safety. 


Control valves can be linear, where the stem moves the valve disk up and down like globe valves, or rotational. Rotary control valves include butterfly valves, which open or close with a 90-degree rotation. The pneumatic diaphragm and electric actuators are the most prevalent on linear and rotational control valves.


Some valves require long stem travel or substantial force to change position. A piston actuator's higher torque is preferable to diaphragm actuators in these situations. Examples of piston actuators are rack and pinion and scotch-yoke designs. 


Single-acting piston actuators control the air pressure on one side of a piston, and with higher air pressure, the piston moves within the cylinder and turns the valve. The air on the opposite side of the piston exits the cylinder via an air vent. With decreased air pressure, the spring expands, causing the piston to move in the opposite direction. 


If air pressure falls below a predetermined threshold or is lost, the spring will push the piston to the desired position, referred to as the "fail" position (open or closed). 


A double-acting piston actuator lacks a spring and has air supply ports on both ends of the cylinder. Increasing air pressure to the supply port moves the valve in one direction. Higher pressure air entering from the opposite supply port pushes the valve in the opposite direction. Filling the cylinder with air and releasing air from the cylinder is regulated by a device known as a positioner. 


Typically, the control of pneumatic actuators occurs from air signals from a controller. Some actuators react directly from a controller, for instance, a 3-15 PSI controller pneumatic output. Sometimes, a controller signal alone cannot counteract friction or fluid pressure. This situation requires a separate, higher-pressure air supply and modulating it with a pneumatic or electro-pneumatic positioner. These devices regulate a higher-pressure air supply to ensure that an actuator has enough torque to position a valve accurately. The positioner responds to a change in the controller's air, voltage, or current signal and proportions the higher pressure air to the actuator. Connecting the actuator stem to the positioner is a mechanical linkage. This mechanical connection is also known as a feedback connection. As the actuator stem moves up or down, or rotationally, the link likewise moves. The location of the connection informs the positioner when sufficient movement coincides with the controller's air signal. The controller's signal transmits to the positioner instead directly to the actuator, and the positioner regulates the air supply provided to the actuator.


Like other process components, actuators are prone to mechanical issues. Since actuator issues can negatively impact the operation of a process, it is essential to be able to recognize actuator issues when they occur. Frequently, an operator can notice an actuator fault by comparing the valve position indication to the position specified by the controller. For instance, if the position indicator shows the valve closed, but the flow indicator on the controller indicates that flow is still passing through the valve, the valve seat and disc are likely worn, enabling leakage through the valve.


Because there are so many different styles and designs of actuators, positioners, and valves and so many industrial applications, the combination possibility matrix is vast. You must discuss your application with a knowledgeable, experienced valve expert. The success of your project in terms of product quality, system cost, maintenance, and safety depends upon it.


Piping Specialties / PSI Controls
800-223-1468

The REOTEMP Model W Explosion Proof, Field Mounted, HART Temperature Transmitter

REOTEMP Model W

Process control instrumentation monitors and controls a process to maintain proper functioning standards and keep it within a proper functioning and safe operating range. Process variables are the parameters or quantities maintained to keep the process within desired and acceptable limits. Instrumentation systems compare process variables to a desired setpoint and then produce offsetting and corrective control outputs. 

Typical process variables are level, flow, temperature, density, pH (acidity or alkalinity), mass, and conductivity. 

Temperature is a measurement of how hot or cold something is, whether it's an object or a process medium. The temperature setpoint is the process variable's target value for optimum control, quality, and safety. In a process where the temperature stays within plus or minus 1 degree Celsius of 100℃, the setpoint is 100. 

Temperature transmitters are instruments that convert a weak thermocouple or RTD signal to a robust analog (4-20mA or HART) or digital (Profibus or Fieldbus) signal. The temperature sensor and the final control device communicate through the transmitter. Since transmitters provide more robust analog or digital outputs, external signal conditioning and amplification devices are eliminated, thus lowering costs.

The REOTEMP Model W Explosion Proof Field Mounted HART Temperature Transmitter includes a local display, HART compatibility, and a 4-20mA output. The field-mounted transmitter is available as a complete RTD or thermocouple assembly customized to your process. 

The REOTEMP Model W includes linearized temperature measurement with TC and RTD sensors (Pt100 and Ni100) inputs, local display, HART communication, and 4-20 mA analog PV output for individual, difference, or average temperature measurement. It can handle two RTD or TC input sensors, and up to 63 transmitters (HART 7) can connect in a multidrop communication setup.

For more infomration about REOTEMP products in New England, contact PSI Controls / Piping Specialties, Inc. Call 800-223-1468 or visit https://psi-team.com.

Submersible Level Transmitters


AMETEK’s Submersible Level Transmitters are one of the most complete lines in the industry for measuring industrial and water/wastewater plant level. From the low cost Model SDT with a light weight 316 Stainless Steel body that can measures levels up to 345 feet, to the Model 575 and 675 with a 316 Stainless Steel body and Hastelloy diaphragm that can measure up to 690 feet with CSA intrinsically safe approval for hazardous locations, such as lift stations, process sludge tanks, AMETEK offers a series of different products to meet your level needs.

For more information in New England, contact PSI Controls or Piping Specialties. Call 800-223-1468 or visit https://psi-team.com.

The Reotemp TDS Pressure Transmitter and Switch With Display

The Reotemp TDS pressure transmitter and switch with display features include 0.25% accuracy, display, and electrical connections are independently rotatable 335°/343°, analog outputs switchable between 4-20ma or voltage, rugged construction, with protection from shock, over-range, and over-voltage. Additionally, the TSDS calibration range is adjustable and provides excellent long-term stability.

For more information on Reotemp products in New England, contact PSI Controls / Piping Specialties. Call 800-223-1468 or visit https://psi-team.com.

The AMETEK Drexelbrook Impulse Guided Wave Radar Level Transmitter

Drexelbrook Impulse

The Drexelbrook Impulse is a guided wave radar (TDR) that measures all liquids and slurries' overall level and other volumetric measures. When competitive water sensors fail, the Impulse continues to provide accurate values. 

The Drexelbrook Impulse is a two-wire guided wave radar that uses field-proven TDR level (Time Domain Reflectometry) technology to produce accurate Total Level, Distance, and Volumetric outputs on all liquids and slurries. 

The Impulse handles even the most challenging level measuring applications. It will continue to give dependable and accurate measurements even in the presence of disturbances such as agitated or uneven surfaces, foam, or probe coating. Changes in the density and dielectric characteristics, dusts, mist, and turbulence do not affect it. When other water level sensors fail, the Impulse continues to measure. 

This water level sensor is a perfect replacement for costly mechanical dispenser systems, with a wide range of probe types and material possibilities for various applications. 

This guided wave radar is simple to use for any user due to its simple navigation, push-button setups, and HART connections. It only takes a few minutes to install. Choose your level measuring type and language, and the Impulse is ready to use. 

The Impulse guided wave radar is intrinsically safe, explosion-proof, and non-incendive, and it does not require calibration or level changes.

Additionally, Drexelbrook recently introduced an enlarged coaxial sensor for The Impulse GWR. The new 1.66" (42mm) diameter probe provides reliable accuracy within high viscosity liquids. The new enlarged coaxial sensor option for The Impulse GWR allows the material to flow off the sensor easily when used with viscous fluids.

Piping Specialties / PSI Controls
https://psi-team.com
800-223-1468

Piping Specialties / PSI Controls - New England's Premier Valve and Instrumentation Source

Piping Specialties, Inc. was created in 1975 to provide industrial users in the Northeast with specialty valves and mechanical products and unsurpassed customer service. Piping Specialties' customer base and product offerings have grown steadily and sustainably over the years.  PSI Controls provides system design, sales, and service of process controls and instrumentation. PSI Controls offer a broad range of engineering expertise and experience in applying automated valves and process instrumentation in the most demanding applications.

Piping Specialties / PSI Controls

800-223-1468

The CPV O-SEAL® Valve

CPV’s flagship O-SEAL® valves have been the industry’s standard-bearer for bubble-tight performance and robust longevity in high pressure applications. All O-SEAL® valves provide pressure ratings up to 6000 PSI, with an optional vacuum service available. They provide superior bubble-tight performance, even with elusive gases like hydrogen and helium, and are resistant to debris and seat damage. 

For more information about O-SEAL® valves in New England, contact Piping Specialties, Inc. Call them at 800-223-1468 or visit their website at https://psi-team.com.

Level Measurement for Water in Sewage Pools

Level Measurement for Water in Sewage Pools

This application takes place at a large power plant well known for its "Green Approach" and it's commitment to ensuring a clean and healthy atmosphere in and around the plant. 

The branched sewer system of the power plant requires instant maintenance and control. The plant uses water to operate the turbine. This water and other wastes move to the city’s wastewater treatment plant through the sewage system.

Some of the sewers are dispersed in remote locations around the plant, making it difficult for personal maintenance personnel to approach and repair damage on time. Plant technicians were looking for a solution to control the sewers better and avoid cases where wastewater might overflow. 

The sewage pool readings had to be transmitted to the central DCS because the sewage system connects to a central control room. The plant needed a 24/7 watch and an on-site guard to gain maximum control over those sewers. 

Technicians also stressed that wastewater flooding was inevitable because it takes time for the equipment to handle blockages. This flooding has caused severe damage to the environment. It was essential to control the wastewater level in the sewers to avoid cases such as these from reappearing. 

The Drexelbrook Usonic - The Solution 

After a lengthy examination of several possibilities, the plant decided to install two Drexelbrook USonic systems in its sewage pools. The ability of USonic to produce non-contact, continuous, and accurate readings of the water level in the pools gave the engineers of the plant a clear picture of the pools' status. 

Its compact size and integral construction simplify its installation, offering an efficient solution in no time at all. The USonic had no problem providing 12ft water level readings with a measurement range of up to 30 ft.  It can map obstacles in the pool and memorize interfering signals with its scan distance function. 

The USonic was linked to the central control system via 4-20mA, allowing the plant engineers to control the water level in the sewers constantly. The engineers know that the sewers would maintain the correct water level, and the system would be alerted in an emergency. 

Summary

The two USonic systems installed in the power plant give complete control over the sewers' water level to the plant's engineers. The systems' ability to display continuous level readings around the clock improved maintenance crews handle the sewage system.

To detect sudden blockages and avoid environmental damage on time, they can now save time. The plant received an immediate return on investment due to its compact size and reduced price.

Piping Specialties / PSI Controls
800-223-1468

The Operation of the Cash Valve B Series, Type E-55, Type PBE-1, Type PBE-2, and Type PBE-5

Cash Valve is a leading manufacturer of pressure regulating and back pressure valves offering products for steam, air/gas, liquid, and cryogenic applications. Products range in size from 1/8" - 2" for threaded NPT connections and up through 6 inches for flanged configurations. Temperatures range between cryogenic up through 800°F, and materials of construction are offered with iron, brass, bronze, carbon and stainless steel depending on your application.

For more information about Cash Valve, contact Piping Specialties, Inc. by calling 800-223-1468 or by visiting their web site at https://psi-team.com

The Flow Safe F9000 "SurgeFlow" Liquid Surge Relief Valve

Liquid product pipelines must be protected from liquid surges. Surges are caused by pump failure, rapid block valve closing, non-return check valve hard-shutting, emergency shutdown of a tank or loading system, or even a pump coming on or tripping. The magnitude of surge pressures varies, some virtually undetectable to those severe enough to cause significant damage. These propagating waves, either increasing or decreasing rapidly, are commonly known as a transient hydraulic surge of water hammer that can cause severe damage to liquid product pipelines, vessels, flanges, valving, and associated equipment. 

The Flow Safe SurgeFlow series has been developed exclusively for liquid surge protection. These valves are extremely simple and 100% reliable. The dome cavity volume on top of the main valve piston is filled with nitrogen gas to affect the valve's proper set pressure. Dome gas pressure is set according to the characteristic piston seat-to-seal area ratio for the given valve size. This dome load forces the main valve into a closed position using a soft elastomer seat, providing a 100% tight shut-off. When surge pressure is sensed, the SurgeFlow valve piston opens immediately as the liquid fluid force acting under the piston overcomes the force from the dome gas working on the top. The piston continues to lift in proportion to the pressure surge, slightly compressing the dome gas. The closing cycle responds directly to pressure decay in the piping upstream of the SurgeFlow surge relief valve. 

SurgeFlow series valves are designed for accurate and repeatable performance. They will handle both minimum and maximum surge cases when called upon to relieve. Flow Safe suggests all surge relief valves be located nearest the point where maximum pressure can occur in the main pipeline for optimal safety purposes. 

For more information about Flow Safe products in New England, contact Piping Specialties. Call them at 800-223-1468, or visit their website at https://psi-team.com.

Sanitary Process Refractometers for Food, Beverage & Dairy Industries: The Vaisala K-PATENTS PR-43A

Vaisala K-PATENTS® PR-43A Models PR-43-AC, PR-43-AP, PR-43-APT

Vaisala K-PATENTS® Sanitary Process Refractometers PR-43-AC for hygienic installations in small pipe line sizes of 2.5 inch and smaller; PR-43-AP for hygienic installations in large pipes, tanks, cookers, crystallizers and kettles and for higher temperatures up to 150°C (300 °F); and the PR-43-APT for flush mounting installations in cookers, cooling crystallizers and other vessels that have scrapers or mixers.

Sanitary Refractometer Applications:

Extraction, evaporation, brewing, distilling, sugar dissolving, blending, filling. Alcohol, rum, whiskey, brandy, vodka, molasses, liquors, cider, alcoholic beverages, pre-mixed liquors. Beer and malt beverages, wort, cut beer, root beer. Juices, blended vegetable and fruit juices and nectars, still drinks, vegetable and juice concentrates, iced tea and coffee, instant coffee and tea. Soft drinks, energy and sport drinks, beverage base. Wines, grape must.

Sanitary Refractometer 3A Approval:

The Sanitary refractometer PR-43-A is Sanitary 3-A approved to meet the highest hygiene requirements of food production. The 3-A Symbol assures that the Sanitary Refractometer

PR-43-A conforms to 3-A Sanitary Standard Number 46-04 for Refractometers and Energy-Absorbing Optical Sensors for Milk and Milk Products and it has passed the independent Third Party Verification inspection for 3-A Symbol authorization.

For more information about Vaisala K-PATENTS products in New New England, contact Piping Specialties, Inc. / PSI Controls. Call them at 800-223-1468 or visit their web site at https://psi-team.com.

ARCA Control Valves in New England


ARCA develops, manufactures, and markets control valves on an international scale primarily for the chemical, food, power, and oil and natural gas industries.

High-performance control valves from ARCA are capable companions in industrial and large-scale power plants by ensuring safe and reliable operation and can be used in all high and low-pressure steam, oil, gas, water/boiler feedwater, and condensate circuits.

Oil and natural gas are the primary sources of energy driving the global economy. ARCA valves have helped ensure production and process reliability in the oil and natural gas industries for many years, and a wide variety of precision-engineered control valves are available that include DN15 (1/2) to DN600 (24") and PN16 to PN400 (ANSI 150-2500) sizes as well as special-purpose valves for all media handled in these areas.

ARCA valves are also indispensable in steel production. Steel production and processing require valves that offer ultra-high performance and a long service life.

Integrated in the bypass section of turbo-compressors, ARCA valves reliably carry out multiple tasks simultaneously by assisting during the start-up and shut-down phases of the compressor.

Concentrated Solar Power plants convert solar radiation into electrical energy. Systems that use  thermal oils as a heat-transfer medium produce temperatures that can reach 400 °C at approximately 40 bar in the solar array. Such applications integrate reliable ECOTROL® 6H high-pressure valves, which feature a bellows seal.

The BIOVENT® control valve developed for the food and pharmaceutical industry, for example, is available in many designs and connection layouts and with drives and positioners in stainless steel to cater to all applications.

For more information on ARCA Control Valves, contact Piping Specialties, Inc. Call them at 800-223-1468 or visit their web site at https://psi-team.com.

Setting Up and Calibrating the Drexelbrook MultiPoint II Level Switch


This video demonstrates how to calibrate and set the Drexelbrook MultiPoint II level switch.

The Drexelbrook Multipoint II level switch product offers three control points located anywhere along a single vertically inserted level sensing element. This level switch can be used to provide high level, high-high level, and low level control points. It also provides an adjustable differential feature for one of the control points for pump on/pump off control making it ideal for sump level control. It is designed to be intrinsically safe for Class I Groups A,B,C,D and Class II Groups E,F,G (Div. 1 and 2). The unit is mounted in FM approved explosion proof housing. The MultiPoint II has no moving parts and the need for maintenance is therefore eliminated. The Drexelbrook MultiPoint II is an economical solution for processes requiring multiple operating points.

For more information about level instrumentation, contact Piping Specialties, Inc. / PSI Controls by calling 800-223-1468 or visit their web site at https://psi-team.com.

Why Use LINK-SEAL®?


LINK-SEAL


LINK-SEAL® is a modular elastomer sealing system that creates a permanent, hydrostatic seal for almost any cylindrical object as it traverses a barrier. The modular LINK-SEAL ® seals are the primary technique for sealing tubes of any size continuously through walls and ceilings. Indeed, any cylinder-shaped item can be secured against water, soil or backfill material rapidly, readily and permanently.

LINK-SEAL® FEATURE AND BENEFITS


    LINK-SEAL
  • Install in up to 75% less time compared to lead-oakum joints, hand-fitted flashings, mastics, or casing boots.
  • Rated at 20 psig (40ft of head), which exceeds the performance requirements of most applications.
  • Designed for use as a permanent seal. Seal elements are specially compounded to resist aging and attack from ozone, sunlight, water, and a wide range of chemicals.
  • Standard fasteners have a two-part zinc dichromate and proprietary corrosion inhibiting coating. Corrosion resistant 316 stainless steel available for maximum corrosion protection.
  • NSF 61 and Factory Mutual Fire Approved materials available. Also carry a wide variety of approvals from various Federal agencies, associations, code groups, laboratories, and organizations.
  • Manufactured in an ISO 9001certified facility.
  • 16 sizes, color-coded EPDM, Nitrile, and Silicone elastomers may be used with various hardware options to match performance characteristics with service conditions.

LINK-SEAL® SPECIFICATIONS

  • Pressure resistant to 20psig (40 ft of head)
  • Standard  — EPDM – rubber (black)
  • Oil Resistant — Nitrile rubber (green)
  • Temperature resistant — Silicone rubber (gray)
  • Low Durometer for fragile pipe — EPDM rubber (blue) Shore 40 ± 5
  • Hardware Options - S316 Stainless Steel and Zinc Dichromate Coated Steel (1470 hr salt spray tested) hardware

LINK-SEAL® APPLICATIONS

Mechanical Contractors - Interior Piping Systems, Manhole Pipe Entry Seals, Waste Treatment Plants, Cased Road Crossings, Thermal Storage Systems, Fire Protection Wall Penetrations, Cased Railroad Crossings, Electrical Isolation of Pipes, Precast Concrete Vault Seals, Insulated Pipe Seals, Dual Containment Seals, Marine Applications, Noise Dampening, Flexible Sign & Pole Supports, Electrical Isolation of Pipe Supports, Mining, Pulp & Paper, Decorative Fountains, Pool Contractors, Electrical Contractors, Waste & Water Treatment, Telecommunications, Valve Pits, Refrigeration Buildings, Guard Post Assemblies, Power Generation Dams, Offshore Oil Rigs, High Pressure Tank Guards, Underground Steel Tanks, Precast Concrete Manufacturers, Perimeter Berm Installations Around Tank Farms, Flow Restrictions in Sewer Maintenance, Fluid Overflow Devices, Noise and Sway Dampener, Through Deck Fire Breaks, Bridge Construction, Septic Tank Installations, Coal Preparation Plants, Tunneling Operations.

For more information on LINK-SEAL® modular wall seals, contact Piping Specialties, Inc. Call them at 800-223-1468 or visit their web site at https://psi-team.com.

Mounting and Adjusting a Rack & Pinion Actuator


A-T Controls is a global leader in the design, manufacturing and sale of manual & automated process valves for all types of industries.

This video details the steps required to mount and adjust a TRIAC rack and pinion actuator to an AT Controls ball valve.

Piping Specialties sells, services, and automates A-T Controls valves and TRIAC actuators in New England.

For more information, contact Piping Specialties by calling 800-223-1468 or visiting https://psi-team.com.