Piping Specialties Inc. (PSI) is one of the northeast's largest suppliers of valves; process controls/instrumentation, and engineered mechanical specialties. Industries served: Power Generation, Pulp/Paper, HVAC, Water/Wastewater, Food/Beverage, Life Sciences, Chemical/ Process, Semiconductor. For more information visit PSI-Team.com or call 800-223-1468.
Advanced Water Level Monitoring in Sewage Pools
Plugged Chute Detection Technology: The Superiority of RF Admittance
The operation of industrial processes is a delicate balance of efficiency, safety, and maintenance. A crucial part of maintaining this balance is ensuring the smooth operation of material handling systems, which often employ chutes to transport bulk materials. One common complication these systems face is the problem of chute blockages or plugging, a critical issue that can lead to costly downtime, equipment damage, and potential safety hazards.
Plugged chute detection technologies mitigate these challenges, offering early detection and warning of chute blockages. However, the effectiveness of these technologies varies, and understanding their characteristics is essential for making an informed decision.
Overview of Plugged Chute Detection Technologies
Plugged chute detection technologies fall into three broadly classified groups, mechanical, acoustic, and electromagnetic methods.
Mechanical systems, such as tilt switches and paddle wheel indicators, are simple and inexpensive but prone to mechanical failure and false alarms due to vibration or material buildup. They also require regular maintenance to function effectively.
Acoustic detectors, on the other hand, utilize microphones to listen for changes in the acoustic signature of material flow. While this can be an effective method, it is sensitive to environmental noise and requires sophisticated signal processing to distinguish between normal and blocked flow.
Electromagnetic methods include capacitive probes, microwave radar, and RF Admittance. These offer non-contact detection and are less prone to false alarms and mechanical failures—however, the material's properties, environmental conditions, and installation setup affect their performance and application.
RF Admittance: The Optimal Choice
After an extensive review of these technologies, RF Admittance emerges as the overall best selection for plugged chute detection for several reasons:
Reliability
RF Admittance technology uses a probe to measure changes in the dielectric constant (a property of materials that affects their response to an electric field) between the sensor and the chute wall. When the chute is clear, the admittance (the measure of how easily a circuit or device allows an electric current to pass) between the probe and chute wall will be at one level, and when the chute is blocked, the admittance will change significantly. This reliable detection method leads to fewer false alarms than mechanical and acoustic systems.
Resistance to Material Buildup
One of the significant advantages of RF Admittance technology is its resistance to material buildup on the probe. The technology uses a driven shield construction that ensures only the material near the active sensor affects the reading. This feature helps to eliminate the risk of false alarms due to material buildup, a common issue in other technologies.
Versatility
RF Admittance technology works with various materials, regardless of their conductive or non-conductive properties, making it a versatile solution in different industries handling multiple types of bulk materials.
The Drexelbrook Solution
The Drexelbrook Plugged Chute Detector consistently identifies whether material is flowing through chutes. If the material ceases to flow due to a blockage, an alarm from the flush-mounted capacitance sensing element will be triggered, prompting further necessary actions such as notifying an operator or shutting down a conveyor belt.
The Drexelbrook detector, also known as a blocked chute switch, reliably tracks the presence or absence of bulk solids material in chutes without compromising flow speed. This cost-effective device ensures the continuous flow of materials.
Its robust sensor design makes this point-level switch optimal for handling materials such as coal, wood chips, ores, and powders. Since it is flush mounted through a chute wall, there is no protrusion into the chute to hinder or obstruct material flow.
The point-level switch can automatically identify and disregard coatings, thus preventing false alarms. It features a universal power supply that auto-detects and adjusts to the input power source.
Unlike similar technologies, the point-level switch for detecting plugged chutes permits remote electronics installation at a convenient or safer location.
The dependable detection of plugged chutes ensures smooth plant operations and significantly reduces the chance of spills due to blockages.
Key Features:
- Availability of both curved and flat sensors
- DPDT relay dry contacts rated at 5A, 120VAC
- Requires less maintenance compared to other technologies; devoid of any moving parts that could potentially hang up or wear out
- Utilizes Drexelbrook PML series electronics
- Auto-detecting supply voltage range: 19-250 VAC, 18-200 VDC, without the need for jumpers
Delivering Process Control Excellence in New England: The Piping Specialties/PSI Controls Advantage
Piping Specialties, Inc. / PSI Controls is a highly regarded process equipment Rep and Distributor with offices in Portland, Maine, and Danvers, Massachusetts. The products they specify, apply, and sell, including process control instrumentation, industrial valves, actuators, and engineered piping products, are vital for the process control industries of New England.
About Piping Specialties/PSI Controls Territory
New England comprises six states: Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, Upstate New York, and Maine. The primary process industries in these states include:
- Manufacturing: Manufacturing is a significant sector in New England, including the manufacturing of machinery, electronic products, biomedical and pharmaceutical products, plastics, and rubber products.
- Food Processing: New England is known for its dairy, seafood, and specialty foods. Dairy processing is significant in Vermont, while seafood processing is prevalent in coastal states like Massachusetts and Maine. There is also a strong presence of craft breweries, wineries, and distilleries.
- Biotechnology and Pharmaceuticals: The biotechnology and pharmaceutical industries are prominent in this region, particularly in Massachusetts, home to many biotech and pharmaceutical companies.
- Microelectronics and Computer Hardware: States like Massachusetts and Connecticut have a strong microelectronics and computer hardware sector, including the manufacturing of semiconductors.
- Chemicals: The chemical industry, including specialty chemicals, industrial gases, and coatings, is also prevalent in this region.
- Energy: While not a traditional "process" industry, the energy sector, including renewable energy technologies, nuclear energy, and conventional power generation, is also significant in New England.
PSI's mission is to ensure the smooth operation of these vital sectors by offering the highest quality products backed by their expert services.
Outstanding Pre and Post Sales Engineering Support
PSI Sales Engineers bring tremendous value to their customer in New England in several crucial ways:
- Technical Expertise: PSI sales professionals know about instrumentation, valves, and other process control equipment. They can help customers understand the benefits and functionalities of different products, enabling them to make informed purchasing decisions that best meet their requirements.
- Customer Needs Analysis: PSI Sales Engineers are skilled at understanding and interpreting customer needs. They can suggest suitable products or tailor-made solutions that will meet a customer's specific needs, ensuring optimal performance and return on investment.
- Customer Education: PSI sales people are pivotal in training customers on adequately using and maintaining equipment, enhancing customer satisfaction and loyalty. This education ensures that the instruments and valves operate at peak efficiency and can prolong their life cycle and minimize downtime.
- Troubleshooting and Support: PSI Sales Engineers often provide technical support, helping to solve any problems customers may encounter with the equipment. Their ability to troubleshoot issues quickly can significantly impact customer satisfaction and retention.
Call Piping Specialties/PSI Controls with Your Next Instrumentation, Valve, or Engineered Piping Requirement
PSI takes pride in their deep industry knowledge, technical expertise, and customer-centric approach, enabling them to tailor their offerings to match our customers' needs. PSI strives to continuously provide reliable, efficient, and safe solutions, reinforcing their commitment to their customers and the broader industry.
Piping Specialties, Inc.
https://psi-team.com
800-223-1468
The Emerson TESCOM™ Anderson Greenwood H2 Series for Hydrogen Applications and Fuel Stations
Level Measurement in the Food Processing Industry
Level sensors and controls are crucial in industrial food processing and production facilities to ensure quality and consistency. These devices monitor and regulate the level of liquids, solids, or granular materials in containers, vessels, or silos. Here are some of the most common types of level sensors and controls used in the industry:
- Capacitive level sensors: These sensors detect changes in capacitance caused by the presence or absence of material (liquid or solid) in a container. They measure liquids, powders, or granular materials levels in various applications, including food and beverages.
- Ultrasonic level sensors: Ultrasonic sensors use sound waves to measure the distance between the sensor and the material's surface. These sensors are non-contact and used for measuring levels of liquids or solids in tanks or silos and provide the food industry with accuracy and reliability.
- Radar level sensors: Similar to ultrasonic sensors, radar level sensors use radio waves to measure the distance between the sensor and the material's surface. They are also non-contact and suitable for liquid and solid materials. Radar sensors are particularly useful in challenging environments with dust, vapor, or foam, making them ideal for food processing applications.
- Hydrostatic pressure level sensors: These sensors measure the pressure exerted by the liquid column on the sensor at a specific depth. The pressure re-calibrates to a level measurement. They are primarily used for measuring liquid levels in tanks and have broad use in the food and beverage industry.
- Float level sensors: Float sensors use a floating device to detect the liquid level in a container. The float's vertical or tilting movement triggers a mechanical or electrical signal indicating the liquid level. Food processing plants often use them for simple and cost-effective level measurements.
- Vibrating or tuning fork level sensors: These sensors use a vibrating probe or tuning fork that changes its vibration frequency when it comes into contact with a material. They can detect the presence or absence of material and provide point-level detection of liquids, powders, or granular materials.
- Optical level sensors: Optical sensors use infrared or visible light to detect the presence or absence of a material at a specific level. They are suitable for various materials, including liquids, powders, and solids, in food processing applications where minimum contact with the material is essential.
The choice of level sensor and control system depends on factors like the process material, the required accuracy, the process conditions, and the specific application within the food processing facility. Each technology has advantages and limitations, so careful consideration is needed to select the most suitable option for each application.
Process Refractometers - The Vaisala Polaris™ Product Family
Trunnion Mount Valves
The Role of Metal Expansion Joints
- Lateral movement: Metallic expansion joints can accommodate lateral movement, which is movement in a side-to-side direction. This is important in systems that are subjected to thermal expansion and contraction, as the pipes will expand and contract due to temperature changes.
- Angular movement: Metallic expansion joints can also accommodate angular movement, which is movement in a rotational direction. This is important in systems that are subjected to vibration, as the pipes will vibrate due to the flow of fluid or gas.
- Axial movement: Metallic expansion joints can also accommodate axial movement, which is movement in a back-and-forth direction. This is important in systems that are subjected to misalignment, as the pipes may not be perfectly aligned.
- In addition to providing flexibility, metallic expansion joints also help to reduce noise and vibration, and they can protect against the effects of corrosion, erosion, and abrasion. They are often used in a variety of industries, including power generation, petrochemical, pharmaceutical, and food and beverage.
Cryogenic Ball Valves
- LNG (Liquefied Natural Gas) storage and transfer: Cryogenic ball valves are used to control the flow of LNG in storage tanks and transfer lines.
- Cryogenic tanks and vessels: Cryogenic ball valves are used to control the flow of cryogenic fluids in tanks and vessels used for storage and transportation.
- Refrigeration and air conditioning: Cryogenic ball valves are used in refrigeration and air conditioning systems to control the flow of refrigerants and other coolants.
- Industrial gases: Cryogenic ball valves are used in the production, storage, and distribution of industrial gases such as oxygen, nitrogen, and argon.
- Chemical and petrochemical processing: Cryogenic ball valves are used in the production and transportation of chemical and petrochemical products that require low temperatures for processing or storage.
- Aerospace and defense: Cryogenic ball valves are used in aerospace and defense applications to control the flow of cryogenic fluids in satellites, rockets, and other space vehicles.
Reotemp MSX HF Safety Pressure Gauge for Use in Hydrofluoric Acid Service
Control Valves, Actuators, and Positioners
Commonly, valves are operated with handwheels or levers, although some must be regularly opened, closed, or throttled. In certain conditions, it is not always practical to position valves manually; hence actuators are employed instead of hand wheels or levers.
An actuator is a mechanism that moves or regulates a device, such as a valve. Actuators decrease the requirement for people to operate each valve manually. Valves using actuators can remotely control valve position, particularly crucial in applications where valves open and close or modulate fast and precisely.
Pneumatic, hydraulic, and electrical actuators are the three fundamental types.
- Pneumatic actuators employ air pressure to generate motion and are probably the most prevalent type of actuator utilized in process systems.
- Actuators powered by a pressurized liquid, such as hydraulic fluid, are called hydraulic actuators. Typically, hydraulic actuators of the same size produce more torque than pneumatic actuators.
- Electric actuators generate motion using electricity. Actuators usually belong to two broad categories: solenoid or motor-driven actuators.
Actuators position valves in response to controller signals and can be positioned rapidly and precisely to accommodate frequent flow variations. The instrumentation systems that monitor and respond to fluctuations in plant processes include controllers. Controllers receive input from other instrumentation system components, compare that input to a setpoint, and provide a corrective signal to bring the process variable (such as temperature, pressure, level, or flow).
You have a control valve when actuators pair with flow-limiting or flow-regulating valves. Generally speaking, control valves automatically restrict flow to provide accurate flow to a process to maintain product quality and safety.
Control valves can be linear, where the stem moves the valve disk up and down like globe valves, or rotational. Rotary control valves include butterfly valves, which open or close with a 90-degree rotation. The pneumatic diaphragm and electric actuators are the most prevalent on linear and rotational control valves.
Some valves require long stem travel or substantial force to change position. A piston actuator's higher torque is preferable to diaphragm actuators in these situations. Examples of piston actuators are rack and pinion and scotch-yoke designs.
Single-acting piston actuators control the air pressure on one side of a piston, and with higher air pressure, the piston moves within the cylinder and turns the valve. The air on the opposite side of the piston exits the cylinder via an air vent. With decreased air pressure, the spring expands, causing the piston to move in the opposite direction.
If air pressure falls below a predetermined threshold or is lost, the spring will push the piston to the desired position, referred to as the "fail" position (open or closed).
A double-acting piston actuator lacks a spring and has air supply ports on both ends of the cylinder. Increasing air pressure to the supply port moves the valve in one direction. Higher pressure air entering from the opposite supply port pushes the valve in the opposite direction. Filling the cylinder with air and releasing air from the cylinder is regulated by a device known as a positioner.
Typically, the control of pneumatic actuators occurs from air signals from a controller. Some actuators react directly from a controller, for instance, a 3-15 PSI controller pneumatic output. Sometimes, a controller signal alone cannot counteract friction or fluid pressure. This situation requires a separate, higher-pressure air supply and modulating it with a pneumatic or electro-pneumatic positioner. These devices regulate a higher-pressure air supply to ensure that an actuator has enough torque to position a valve accurately. The positioner responds to a change in the controller's air, voltage, or current signal and proportions the higher pressure air to the actuator. Connecting the actuator stem to the positioner is a mechanical linkage. This mechanical connection is also known as a feedback connection. As the actuator stem moves up or down, or rotationally, the link likewise moves. The location of the connection informs the positioner when sufficient movement coincides with the controller's air signal. The controller's signal transmits to the positioner instead directly to the actuator, and the positioner regulates the air supply provided to the actuator.
Like other process components, actuators are prone to mechanical issues. Since actuator issues can negatively impact the operation of a process, it is essential to be able to recognize actuator issues when they occur. Frequently, an operator can notice an actuator fault by comparing the valve position indication to the position specified by the controller. For instance, if the position indicator shows the valve closed, but the flow indicator on the controller indicates that flow is still passing through the valve, the valve seat and disc are likely worn, enabling leakage through the valve.
Because there are so many different styles and designs of actuators, positioners, and valves and so many industrial applications, the combination possibility matrix is vast. You must discuss your application with a knowledgeable, experienced valve expert. The success of your project in terms of product quality, system cost, maintenance, and safety depends upon it.