Showing posts with label Maine. Show all posts
Showing posts with label Maine. Show all posts

Industrial Process and Commercial Pressure Gauge Selection

Industrial Process and Commercial Pressure Gauges

Download the US Gauge Product Selection Guide from this link.

Pressure gauges are ubiquitous in practically all industries on machines all around the world. At the same time, there are millions of different combinations of shapes, sizes, options, and materials. It's imperative to follow these five application factors for safe use and extended product life.

Process Media

Because direct contact of the sensing element to the process media is possible, any caustic media, particle media, or media that can harden and clog the pressure gauge element, must be avoided. Using a direct connection and Bourdon tube sensor is satisfactory for a non-clogging, non-corrosive medium. Use a diaphragm seal for process media that could cause blockage or be corrosive.

Temperature of the Process Media

Very hot media, such as steam or hot water, can raise the internal temperature of the gauge, resulting in failure or a dangerous state. For high-temperature applications, use a gauge "siphon" or diaphragm seal.

Environment and Ambient Operating Temperature

It is critical to understand the rated ambient environment for any instrument. Elevated ambient temperatures, dampness, vibration, and corrosive environments can all impact accuracy, calibration, and safety. If oxidizing or reducing atmospheres exist, select the appropriate case and mechanism materials, and consider installing supplementary devices, such as remote diaphragm seals, to move the gauge.

The Potential for Severe Pressure Fluctuations

The addition of pressure restrictors, snubbers, or liquid-filling will increase the service life of the pressure gauge in applications where dramatic line pulsations or high over-pressure conditions are possible.

Installation Orientation and Connection Type

Bottom (radial) and rear connectors are standard on pressure gauges. NPT (National Pipe Thread Taper) threaded connections are the most common. However, numerous different process connections are available, including straight threads, metric threads, and specialized fittings. Make sure you understand how the gauge is connected. Pressure gauges should almost always be upright when installed.

Piping Specialties / PSI Controls is standing by, ready to help you apply the correct pressure gauge for your application. Call us at 800-223-1468 for more information on pressure gauges.

Piping Specialties / PSI Controls - New England's Premier Valve and Instrumentation Source

Piping Specialties, Inc. was created in 1975 to provide industrial users in the Northeast with specialty valves and mechanical products and unsurpassed customer service. Piping Specialties' customer base and product offerings have grown steadily and sustainably over the years.  PSI Controls provides system design, sales, and service of process controls and instrumentation. PSI Controls offer a broad range of engineering expertise and experience in applying automated valves and process instrumentation in the most demanding applications.

Piping Specialties / PSI Controls

800-223-1468

Providing New England Industrial Companies Outstanding Value, Support & Service for Valves and Process Instrumentation

Piping Specialties / PSI Controls

Piping Specialties / PSI Controls is a leading industrial instrumentation and controls manufacturer's agent and distributor serving New England, including Maine, New Hampshire, Massachusetts, Vermont, Rhode Island, Connecticut, and Upstate New York. The company's commitment to the industrial market since 1975 has resulted in a wide range of high-quality valves, piping systems, and flow, level, strain, and temperature instrumentation. With a team of highly trained outside and inside staff, Piping Specialties / PSI Controls solves demanding applications and delivers excellent customer service. 

All major industrial markets, including power generation, chemical manufacturing, pulp and paper, oil and gas extraction, water and wastewater treatment, and nuclear power generation, have benefited from PSI's products. Piping Specialties / PSI Controls has been there with their customers for over 40 years, offering superior support and service.

Piping Specialties / PSI Controls

800-223-1468

Drexelbrook CheckWell™ Water Well Level Sensor

Drexelbrook CheckWell™

The Drexelbrook CheckWell™ water well level sensor automatically monitors the level or drawdown in water wells up to 3000 feet deep.

The AMETEK Drexelbrook CheckWell™ water well level sensor automatically monitors the level or drawdown in water wells up to 3000 feet (914m) deep. It generates a continuous linear output signal that is directly proportional to the well level. This output can be used for remote monitoring/recording, warning signals, and pump control via optional current-actuated relays.

The advantages include quick installation, no manual maintenance, and an all-electronic design for exceptional reliability. Density variations, mineral or oil deposits on the sensing feature, and oil on top of the water do not affect the device.

DOWNLOAD THE DATASHEET HERE

Piping Specialties / PSI Controls

800-223-1468

Kurz Flow Meter Allows Precise, Real-Time Dry Flow Measurements for Landfill Pollution Reporting

Kurz Flow Meter

Landfill gas (LFG) is a natural byproduct of organic material decomposition in landfills. LFG is approximately half methane (natural gas's primary component), half carbon dioxide (CO2), and a small amount of non-methane organic compounds. Methane is a potent greenhouse gas that traps heat in the atmosphere 28 to 36 times more effectively than CO2 over a 100-year cycle.

Landfills for municipal solid waste (MSW) are the third-largest source of human-related methane pollution in the United States, accounting for around 15.1 percent of total emissions in 2018.

LFG can be captured, transformed, and used as a renewable energy resource instead of escaping into the air. Using LFG reduces odors and other risks associated with LFG emissions and methane migration into the atmosphere, which contributes to local smog and global climate change. 

A collection of wells and a blower/flare (or vacuum) device remove LFG from landfills. The collected gas moves to a central location where it can be stored and handled, depending on the gas's ultimate use. The gas can be flared or put to good use in an LFG energy project from here.

Because of regulatory requirements, numerous landfills install gas control controls. The federal government has adopted legislation that regulates the use and upkeep of landfills. These rules help eliminate ozone precursors (volatile organic compounds and nitrogen oxides), methane, NMOCs, and odorous compounds in landfill gas pollution, which harms human health and the environment.

Thermal flow meter technology is known for having a low-pressure drop and is suitable for calculating extremely low flows. On the other hand, standard thermal flow meters do not operate well in condensing gas environments like landfill methane recovery systems. The accuracy issues associated with wet gas flow measurements grow by the unpredictability of moisture levels caused by leachate, rain, temperature, and humidity. 

The Kurz WGF flow meter is perfect for use in wet gas applications. Kurz allows you to quantify gas flow precisely and provide real-time dry flow measurements for pollution reporting (federal, state, local regulations, greenhouse gases, and the Landfill Methane Rule).

For more information about Kurz flow meters in New England, contact Piping Specialties, Inc. Call them at 800-223-1468 or visit their website at https://psi-team.com.

Reduced Bore Vortex Flowmeter Provides Better Measurement for Low Flow and Also Saves Cost

Reduced Bore Vortex Flowmeter

Azbil’s AX24 Multivariable Vortex Flowmeter offers accurate and reliable flow metering in a multivariable design. The multivariable design incorporates a high-accuracy velocity sensor, a precision platinum RTD temperature sensor, and a solid-state pressure transducer. The meter’s process connections match the line size but use integrated reducing flanges, and the meter body reduces in diameter, increasing the fluid velocity through the meter. Increasing the velocity in this fashion extends the meter’s measuring range to capture lower flow rates that a full line size meter might miss. 

READ HOW THE AZBIL AX24R EXTENDS MEASURING RANGE FOR LOWER FLOW RATES AND SAVES COST HERE

To learn more about the AX24R visit this page

For immediate action in New England, call Piping Specialties / PSI Control at 800-223-1468.

The CPV O-SEAL® Valve

CPV’s flagship O-SEAL® valves have been the industry’s standard-bearer for bubble-tight performance and robust longevity in high pressure applications. All O-SEAL® valves provide pressure ratings up to 6000 PSI, with an optional vacuum service available. They provide superior bubble-tight performance, even with elusive gases like hydrogen and helium, and are resistant to debris and seat damage. 

For more information about O-SEAL® valves in New England, contact Piping Specialties, Inc. Call them at 800-223-1468 or visit their website at https://psi-team.com.

Industrial Refractometers

Industrial Refractometers

Refractometry, a mixture of physics, material science, and chemistry, is a method that calculates the composition of known substances by measuring their respective refractive index (RI). The refractometer determines dissolved solids' concentration by making an optical measurement of a solution's refractive index (nD). The refractometer measures the refractive index nD and the temperature of the process medium. The calculation is based on the refraction of light in the process medium, called the critical angle of refraction, using a yellow LED light source with the same wavelength (580 nm) as the sodium D line (thus nD). In most solutions, the concentration of solute in a solvent can be determined by measuring the refractive index nD. The relation between the refractive index and the concentration depends on the solvent and solute, temperature, and wavelength.


Typical examples of industrial refractometry uses are:


  • The calculation of the salinity of water to assess its drinkability.
  • The analysis of dissolved solids in liquor production in pulp and paper production.
  • The assessment of sugar content ratios for food products and beverages.
  • The understanding of the hydrocarbon content of motor fuels. 


These are just a few examples. There are many more common industrial uses for industrial inline refractometers and thousands of unidentified potential applications. 


To discuss your application for refractometers in New England, contact Piping Specialties, Inc. / PSI. 


Piping Specialties / PSI Controls

800-223-1468

Level Measurement Solutions for Water Treatment

Level Measurement Solutions for Water Treatment

Several functional level measurement technologies have viable solutions for a broad range of industrial and municipal water treatment applications. Because of the variety of applications that exist and the varying application conditions, no one technology is best suited in all cases. 

POINT LEVEL VERSUS CONTINUOUS LEVEL INSTRUMENTS

Regardless of the application, there are two significant classifications of level measurement instrumentation: point level and continuous level measurement.

Point Level (On/Off) measurement indicates the absence or presence of level at a certain threshold (point) within a vessel.  Point-level switches perform as high level and spill prevention alarms, low level, pump protection alarms and pump control.

Continuous Level (Proportional) measurement indicates the level in a vessel over the full span of capacity.  These devices perform as process control as well as inventory control and management.

LEVEL CONTROL TECHNOLOGY CHOICES

The technologies used to measure level are affected differently by the varying process conditions. Below is a brief description of the different technologies commonly used in a water treatment facility.

RF ADMITTANCE/CAPACITANCE
RF Admittance/Capacitance employs a radio frequency signal and monitors for a change in capacitance. Either the presence or absence of material or how much material is in contact with the sensor, making it highly versatile and a right choice for a wide range of conditions and materials for point or continuous level measurement.

RADAR
Radar utilizes either Pulsed Wave or Frequency Modulated Continuous Wave (FMCW) through-air transmission that allows for an accurate non-contact reading of reflected electromagnetic signals.

MAGNETOSTRICTIVE
Magnetostrictive uses an electric pulse from ferromagnetic wire to accurately detect a float's position with embedded magnets.  As the pulse intersects the float's magnetic field, a second pulse reflects an electric circuit that accurately determines the distance and thus the level position.

CONDUCTIVITY SWITCHES
Conductivity switches measure the drop-in resistance when a conductive liquid contacts with two probes or a probe and a vessel wall.

ULTRASONIC (POINT LEVEL)
Ultrasonic (Point Level) measurement electronically resonates a crystal at a fixed frequency to generate sound waves that travel across an air gap to a second crystal.  As liquid fills the gap between the two crystals, the second crystal begins to resonate with the first.

ULTRASONIC (CONTINUOUS LEVEL)
Ultrasonic (Continuous Level) measurement uses a transmitter to generate an ultrasonic pulse and measures the time it takes for a reflected signal to return to the transducer to determine a liquid level.

GUIDED WAVE RADAR (GWR)
Guided Wave Radar (GWR) utilizes a Time Domain Reflectometry (TDR) technique by sending a highly focused electronic signal down a metallic rod or flexible cable waveguide. When the transmitted signal intersects the liquid's surface, it reflects along the rod or cable to determine the distance traveled. The level position is then easily inferred.

HYDROSTATIC
Hydrostatic measurement immerses a pressure transmitter with a sensing diaphragm and a sealed electronic circuitry that transmits an analog signal proportional to the liquid level above the sensor.

FLOAT SWITCHES
Float switches rely on a low-density float mounted in a vessel that magnetically couples to a limit switch. A change in fluid height actuates a switch by moving the float.

VIBRATION/TUNING FORK
The Vibration/Tuning fork is piezoelectrically energized and vibrates at a frequency of approximately 1200Hz, and as the process media cover the fork, the frequency shifts. The internal oscillator the frequency shift by and converts it into a switching command.

POINT LEVEL SOLUTIONS

Advanced RF Admittance/Capacitance point level devices are the most versatile of the point level technologies, especially with process media that can coat the sensor. They provide excellent spill/overfill protection. They are simple to install and have no moving parts, making them virtually maintenance-free. Their robust design and circuitry make them an ideal solution for many water treatment applications.

Both tuning forks and ultrasonic gap switches provide reliable high- or low-level measurements in various applications. For non-coating conductive liquids, conductivity switches provide economic priced measurement while float switches appear in many basic applications at very cost-effective prices.

CONTINUOUS LEVEL SOLUTIONS

Mechanical systems such as floats and bubblers require extensive maintenance and are less reliable and accurate than electronic systems. Hydrostatic systems afford better reliability and are simple to use, and can transmit data to another receiver for remote monitoring, recording, and control.

RF Admittance/Capacitance level is a time-proven and one of the best available technologies for indication and control. RF technology inherently provides the highest accuracy and repeatability in interface measurements. Variations in the makeup of upper and lower phases of a liquid have no appreciable effect on system accuracy. Recalibration is not required.

For short-span measurements, RF Admittance technology provides one of the most preferred readings. As the level of measurement span decreases, the more appropriate RF technology becomes. In spans of only a few inches, RF systems can repeatedly produce accuracies of 1/32ths of an inch. RF has the added benefit of not being limited by “dead zones” inherent with many popular technologies often selected for measurement ranges larger than 5 feet.

Non-metallic tanks pose no technical problems for Ultrasonic, Magnetostrictive, Hydrostatic Pressure, Radar, and GWR (Guided Wave Radar) technologies. The GWR approach is suitable for vessels with internal obstructions and uses lower energy levels than airborne radar technologies. Non-contact technologies, such as Radar and Ultrasonic, can have measurement ranges up to 130 feet. 

For long-range measurements or headroom limitations, flexible sensors offer insertion lengths up to several hundred feet for Hydrostatic Pressure and RF Admittance technology products. Loop-powered GWR (TDR)-based products allow measurement ranges up to 115 feet in selected applications. Magnetostrictive technology provides an accuracy of 0.1% of measurement span in flexible sensor designs up to a maximum range of 70 feet.

Piping Specialties / PSI Controls
800-223-1468

Sizing Calculator for LINK-SEAL® Elastomer Sealing System Available

Sizing Calculator for LINK-SEAL®

LINK-SEAL® modular seals are the premier method for permanently sealing pipes of any size passing through walls, floors, and ceilings. As they pass through barriers, any cylindrical object becomes quickly and persistently secured by the patented Link-Seal® modular seal design.

LINK-SEAL® withstand hydrostatic testing up to 20 PSIG (40 feet of static head) and is used on plastic, metal, and concrete pipes. Electrical and telecommunications cables are sealed within conduit as they enter vaults or utility holes. Link-Seal® also closes the annular space between carrier pipes passing through casings against the entry of water, soil, or backfill material. 

LINK-SEAL® provides a handy calculator to assist in sizing and choosing your LINK-SEAL® sealing system. You can find the calculator here.

Piping Specialties / PSI Controls
800-223-1468

Valve Positioners

Valve Positioners

Valve positioners control a valve's position (ball, butterfly, and globe) such that a given process will achieve specific desired flow parameters. They perform this by determining the error between the optimum valve position and actual valve position. With specialized sensors mounted on the valve stem or actuator shaft, these sensors compare the magnitude of error between the setpoint from the control system and the actual process value. The positioner's corrective output is sent electrically or pneumatically to a valve actuator, which moves the valve in the corrective direction. 

As a control valve accessory and the interface between the control system and valves, positioners play a vital role in ensuring the process loop's performance. The valve positioner adjusts the valves' opening, thereby varying the valve's flow rates, from completely shut or wide open to anywhere in between. An example of this type of positioning control will include mixing hot and cold water to achieve a specified downstream temperature requirement. By controlling the valve's opening and closing, process control parameters such as flow, pressure, level, and temperature are maintained

Piping Specialties / PSI Controls offers a full range of positioning equipment, including pneumatic, electro-pneumatic, intrinsically safe, explosion-proof, and Smart type positioners.

Piping Specialties / PSI Controls
800-223-1468

Level Measurement for Water in Sewage Pools

Level Measurement for Water in Sewage Pools

This application takes place at a large power plant well known for its "Green Approach" and it's commitment to ensuring a clean and healthy atmosphere in and around the plant. 

The branched sewer system of the power plant requires instant maintenance and control. The plant uses water to operate the turbine. This water and other wastes move to the city’s wastewater treatment plant through the sewage system.

Some of the sewers are dispersed in remote locations around the plant, making it difficult for personal maintenance personnel to approach and repair damage on time. Plant technicians were looking for a solution to control the sewers better and avoid cases where wastewater might overflow. 

The sewage pool readings had to be transmitted to the central DCS because the sewage system connects to a central control room. The plant needed a 24/7 watch and an on-site guard to gain maximum control over those sewers. 

Technicians also stressed that wastewater flooding was inevitable because it takes time for the equipment to handle blockages. This flooding has caused severe damage to the environment. It was essential to control the wastewater level in the sewers to avoid cases such as these from reappearing. 

The Drexelbrook Usonic - The Solution 

After a lengthy examination of several possibilities, the plant decided to install two Drexelbrook USonic systems in its sewage pools. The ability of USonic to produce non-contact, continuous, and accurate readings of the water level in the pools gave the engineers of the plant a clear picture of the pools' status. 

Its compact size and integral construction simplify its installation, offering an efficient solution in no time at all. The USonic had no problem providing 12ft water level readings with a measurement range of up to 30 ft.  It can map obstacles in the pool and memorize interfering signals with its scan distance function. 

The USonic was linked to the central control system via 4-20mA, allowing the plant engineers to control the water level in the sewers constantly. The engineers know that the sewers would maintain the correct water level, and the system would be alerted in an emergency. 

Summary

The two USonic systems installed in the power plant give complete control over the sewers' water level to the plant's engineers. The systems' ability to display continuous level readings around the clock improved maintenance crews handle the sewage system.

To detect sudden blockages and avoid environmental damage on time, they can now save time. The plant received an immediate return on investment due to its compact size and reduced price.

Piping Specialties / PSI Controls
800-223-1468

Key SIL (Safety Integrity Levels) Terms

Safety Integrity Levels

The global value of SIL (Safety Integrity Levels) to the process industries has increased significantly over the years. For many companies, SIL is still an elusive term sometimes misunderstood and implemented incorrectly. To fully understand SIL and its consequences, it is essential to comprehend the necessary words, acronyms, and phrases often used and how they relate to the pursuit of functional safety.  The following are some of the most commonly used:

Dangerous failure

Failure with the potential to bring the safety instrumented system into a dangerous or non‐functional state.

FMEDA

Failure Modes Effects and Diagnostic Analysis

HFT

Hardware Fault Tolerance, ability of a hardware to continue to perform a required function in the presence of faults or errors.

MTBF

Mean Time Between Failures

PFD

Probability of Failure on Demand, Probability of hazardous failures for a safety function on demand.

Safety Function

The ability of a system to carry out actions necessary to maintain a defined safe state for a process, equipment, or a plant.

Safety‐Related System

A safety‐related system performs the safety functions that are required to maintain a safe condition (for example, a flow meter, a burner, and a PLC).

SFF 

Safe Failure Fraction, percentage of failures that do not have the potential to put the safety‐related system in a hazardous state.

SIL

Safety Integrity Level, IEC 61508 defines four Safety Integrity Levels (SIL1 through SIL4). Each level corresponds to a level of probability for the failure of a safety function.

SIS 

Safety Instrumented System, implementation of one or more safety instrumented functions.


Piping Specialties / PSI Controls
800-223-1468

Terms and definitions courtesy of Kurz Instruments

The Operation of the Cash Valve B Series, Type E-55, Type PBE-1, Type PBE-2, and Type PBE-5

Cash Valve is a leading manufacturer of pressure regulating and back pressure valves offering products for steam, air/gas, liquid, and cryogenic applications. Products range in size from 1/8" - 2" for threaded NPT connections and up through 6 inches for flanged configurations. Temperatures range between cryogenic up through 800°F, and materials of construction are offered with iron, brass, bronze, carbon and stainless steel depending on your application.

For more information about Cash Valve, contact Piping Specialties, Inc. by calling 800-223-1468 or by visiting their web site at https://psi-team.com

A Free Technical Paper Explaining Refractive Index

Refractive Index

Refractive index measurement is a measurement of the speed of light in a medium. The speed of light (usually denoted by c) is 299 792 458 m/s in a vacuum. In other media, the speed of light is lower, and the refractive index (R.I.) of a medium is how much slower the light's speed is in the medium.

The detection of liquid concentrations by optical means is not new. The law of refraction was mathematically formulated first by Ibn Sahl in 984 but not known in Europe. Instead, its discovery misattribution goes to the Dutch astronomer and mathematician Willebrord Snellius (Snell), who rediscovered the law and published it in 1621. The first laboratory instrument to accurately measure liquids' refractive index was developed by Ernst Abbe in 1874.

This technical paper, courtesy of Vaisala K-Patents, is a technical explanation and understanding of the refractive index.

For more information about industrial refractometers, contact Piping Specialties / PSI Controls by calling 800-223-1468 or by visiting their web site at https://psi-team.com.


A-T Controls Industrial Valve, Actuator and Controls Product Overview

A-T Controls in New England

A-T Controls is a global leader in the design, manufacturing, and sale of manual & automated process valves for all types of industries. A-T Controls is known for its extensive inventory and highly experienced staff that enable them to provide the customer solutions needed to fulfill most valve and actuator requirements while offering both a competitive price and the fastest turnaround in the industry.

A-T Controls products provide high-performance operation in virtually every industry, including Oil & Gas, Refining, Petrochemical, Chemical Processing, Pulp & Paper, Mining, Transportation, Food and Beverage, Pharmaceuticals, Marine, HVAC, Power, and more.

A-T Controls Products Include:

High Performance Butterfly Valves; Resilient Seated Butterfly Valves; Trunnion Mounted Ball Valves; Pig Valve Dual Valve; Isolation Valve Assemblies; Cryogenic Ball Valves; Lined Ball Valves; Tank Bottom Valves; Electric Actuators; Spring Return Electric Actuators; Fail Safe Electric Actuators; Heavy Duty Actuators; Pneumatic Scotch Yoke Actuators; Pneumatic Rack & Pinion Actuators; 180ยบ Pneumatic Actuators; Stainless Steel Pneumatic Actuators; Declutchable Gear Operators; Gear Operators; Limit Switches; Solenoids; Positioners.

DOWNLOAD THE A-T CONTROLS PRODUCT GUIDE

For more information, contact Piping Specialties, Inc / PSI Controls. Call them at 800-223-1468  of visit their website at https://psi-team.com.

Cost-effective, Non-contact Ultrasonic Level Measurement from Drexelbrook

USonic Level Transmitter

Affordable, 2-Wire Level Transmitter with the performance and features of premium, line-powered systems.

DOWNLOAD THE USONIC DATA SHEET HERE

USonics ultrasonic technology level products from the Drexelbrook family offers a cost-effective two-wire and line powered versions for the non-contact measurement of liquids and slurries for level, distance, volume, and open channel flow.   Level, size, volume, and open-channel flow measurements are easily configured via a menu-driven display.   The USonic level transmitter has a 4-20 mA two-wire HART output signal and is suitable for all Class I Div. 1, Zone, I.S., or explosion-proof locations.

For more information contact PSI Controls / Piping Specialties by calling 800-223-1468 or visit https://psi-team.com.

The Flow Safe F9000 "SurgeFlow" Liquid Surge Relief Valve

Liquid product pipelines must be protected from liquid surges. Surges are caused by pump failure, rapid block valve closing, non-return check valve hard-shutting, emergency shutdown of a tank or loading system, or even a pump coming on or tripping. The magnitude of surge pressures varies, some virtually undetectable to those severe enough to cause significant damage. These propagating waves, either increasing or decreasing rapidly, are commonly known as a transient hydraulic surge of water hammer that can cause severe damage to liquid product pipelines, vessels, flanges, valving, and associated equipment. 

The Flow Safe SurgeFlow series has been developed exclusively for liquid surge protection. These valves are extremely simple and 100% reliable. The dome cavity volume on top of the main valve piston is filled with nitrogen gas to affect the valve's proper set pressure. Dome gas pressure is set according to the characteristic piston seat-to-seal area ratio for the given valve size. This dome load forces the main valve into a closed position using a soft elastomer seat, providing a 100% tight shut-off. When surge pressure is sensed, the SurgeFlow valve piston opens immediately as the liquid fluid force acting under the piston overcomes the force from the dome gas working on the top. The piston continues to lift in proportion to the pressure surge, slightly compressing the dome gas. The closing cycle responds directly to pressure decay in the piping upstream of the SurgeFlow surge relief valve. 

SurgeFlow series valves are designed for accurate and repeatable performance. They will handle both minimum and maximum surge cases when called upon to relieve. Flow Safe suggests all surge relief valves be located nearest the point where maximum pressure can occur in the main pipeline for optimal safety purposes. 

For more information about Flow Safe products in New England, contact Piping Specialties. Call them at 800-223-1468, or visit their website at https://psi-team.com.

Thermal Flowmeters for Wastewater Applications

Kurz Flowmeter for Wastewater Applications

Wastewater treatment plants ( WWTPs) or publicly owned treatment plants (POTWs) must operate 24/7 to satisfy domestic, industrial, and storm drain sources. Sewage treatment includes eliminating pollutants from wastewater and sewage (human waste, animal waste, soaps, and detergents) to create a safe fluid waste stream that can be reintroduced safely into the ecosystem and a solid waste appropriate for reuse (usually as fertilizer). The primary applications for flow meters in wastewater treatment settings measure blower air to each pool in the aeration basin and measure digester gas flow.

Kurz Flowmeter on Digester
The aeration basin is an array of treatment pools containing aerobic bacteria that break down the pools' sewage. A blower adds the necessary dissolved oxygen (DO) to the aerobic bacteria in the aeration basin. Too little oxygen destroys the bacteria, and too much oxygen is expensive; running the aeration blower accounts for up to 60% of all wastewater power consumed.

Digester sewage is called "sludge." When bacteria is added to the digester, the sludge breaks down and releases gas. This digester gas is collected, compressed, it's excess moisture gets removed, and is then cleaned in a scrubber. The cleaned gas is sent to engines or fuel cells for power generation, boiler water heating (for steam or hot water), and excess gas burns off at the flare. Many extensive sewage treatment facilities use digester biogas to operate the plant, minimizing their grid power consumption.

Developing accurate flow rate data allows wastewater treatment facilities to more precisely manage digester production levels, enabling tighter controls on methane levels and flaring. Kurz Instruments provides a handy overview of where thermal flowmeters are applied and provide optimal performance. 

DOWNLOAD THE TECHNICAL PAPER HERE

For more information about applying flowmeters to wastewater applications in New England contact Piping Specialties. Call them at 800-223-1468 or visit their site at http://psi-team.com.

Thermal Flow Meters for Pulp & Paper Applications

Thermal Flow Meters for Pulp & Paper Applications
Trees used in paper-making go through processing in a de-barker and a chipper, where they reduce to approximately one-inch wood chips. The wood chips are pressure cooked in a digester and become pulp, refined, turned into slush, and screened. Screening drains away liquid, and the resulting pulp is then pressed and dried into the paper. Several steps within the pulp and paper-making process create emissions that must be monitored and reported.

Creating paper pulp relies on a careful balance of low-velocity air flows among the various processes. For example, the recovery boiler following the digester modulates to follow the digester load changes. Additionally, a recovery boiler uses the black liquor's chemical reaction to generate heat for the boiler. It has three airflow systems requiring tight control to create stable air flows.

Kurz Instruments provides a good application note explaining the areas where thermal flow meter uses appear in the pulp and paper production process. You can download the application note below.

DOWNLOAD THE THERMAL FLOW METERS FOR PULP & PAPER APPLICATION NOTE HERE

For more information on instrumentation for pulp and paper mills in New England, contact PSI Controls (Piping Specialties, Inc.). Call them at 800-223-1468 or visit their website at https://psi-team.com.