Showing posts with label Vaisala. Show all posts
Showing posts with label Vaisala. Show all posts

Process Refractometers - The Vaisala Polaris™ Product Family

The Vaisala Polaris Process Refractometers

Industrial refractometers are essential in process automation as they help ensure product quality and consistency, reduce waste, and increase productivity. Refractometers measure a substance's refractive index, which measures how much light is bent as it passes through a sample. This measurement can provide valuable information about the composition and concentration of a solution, which is critical in many industrial processes.

In the food and beverage industry, refractometers measure the sugar content of juices, jams, and other products. This measurement helps ensure that the products are consistent in taste and texture and meet regulatory requirements. In the pharmaceutical industry, refractometers measure the concentration of active ingredients in medications, which is critical for ensuring the effectiveness and safety of the product. In pulp and paper production, process refractometers measure the concentration of dissolved solids in different stages of the production process, such as in the pulping process, bleaching process, or paper coating process. Process refractometers are used in semiconductor manufacturing to measure the concentration of chemical solutions used in various functions, such as cleaning, etching, and chemical mechanical planarization. Finally, process refractometers are commonly used in chemical production to measure the concentration of dissolved solids, such as salts, acids, and other chemicals, in various stages of the production process. 

By automating the process of measuring refractive index, industrial refractometers can provide accurate and reliable measurements in real-time without the need for manual testing, helping to reduce errors and improve process efficiency, as well as reduce labor costs associated with manual testing. In addition, automated refractometers can be integrated into larger process control systems, allowing for continuous monitoring and control of critical process parameters.

Vaisala specializes in developing and manufacturing environmental and industrial measurement equipment and systems. Their new Vaisala Polaris™ Product Family optimizes manufacturing processes, enhances productivity, and saves resources, energy, and time in various industries and hundreds of applications.

Vaisala Polaris™ utilizes an optical measurement principle that eliminates the need for regular maintenance when combined with zero moving parts, making their product an efficient and reliable solution for businesses needing continuous, uninterrupted measurement readings. Additionally, Polaris™ works seamlessly out of the box with Vaisala's Indigo520 transmitters, allowing for an easy setup process. To further ensure accuracy, Vaisala has developed a library of over 500 concentration models that allow for precise measurements of various dissolved solids, catering to the unique needs of their clients.

Vaisala Polaris™ boasts unparalleled accuracy, with no chance of drift due to the absence of particles, bubbles, or color influencing the readings. Additionally, Polaris™ product has long-term stability, and the measurement principle involves no moving parts, ensuring years, and even decades, of precise and stable measurement. As an added benefit, Vaisala provides an Engineer to Order service for more significant opportunities, allowing for the customization of their product to fit the specific needs of their clients.

Overall, industrial refractometers play a critical role in process automation, helping to ensure product quality and consistency, improve efficiency and productivity, and reduce waste and costs. As automation technology advances, refractometers and other process monitoring instruments will likely become even more important in industrial settings. Vaisala Polaris™ is an advanced technology that provides superior performance and is ideal for your application. For more information about Vaisala Polaris™ in New England, contact Piping Specialties / PSI Controls. Call them at 800-223-1468 or visit https://psi-team.com.

Sanitary Process Refractometers for Food, Beverage & Dairy Industries: The Vaisala K-PATENTS PR-43A

Vaisala K-PATENTS® PR-43A Models PR-43-AC, PR-43-AP, PR-43-APT

Vaisala K-PATENTS® Sanitary Process Refractometers PR-43-AC for hygienic installations in small pipe line sizes of 2.5 inch and smaller; PR-43-AP for hygienic installations in large pipes, tanks, cookers, crystallizers and kettles and for higher temperatures up to 150°C (300 °F); and the PR-43-APT for flush mounting installations in cookers, cooling crystallizers and other vessels that have scrapers or mixers.

Sanitary Refractometer Applications:

Extraction, evaporation, brewing, distilling, sugar dissolving, blending, filling. Alcohol, rum, whiskey, brandy, vodka, molasses, liquors, cider, alcoholic beverages, pre-mixed liquors. Beer and malt beverages, wort, cut beer, root beer. Juices, blended vegetable and fruit juices and nectars, still drinks, vegetable and juice concentrates, iced tea and coffee, instant coffee and tea. Soft drinks, energy and sport drinks, beverage base. Wines, grape must.

Sanitary Refractometer 3A Approval:

The Sanitary refractometer PR-43-A is Sanitary 3-A approved to meet the highest hygiene requirements of food production. The 3-A Symbol assures that the Sanitary Refractometer

PR-43-A conforms to 3-A Sanitary Standard Number 46-04 for Refractometers and Energy-Absorbing Optical Sensors for Milk and Milk Products and it has passed the independent Third Party Verification inspection for 3-A Symbol authorization.

For more information about Vaisala K-PATENTS products in New New England, contact Piping Specialties, Inc. / PSI Controls. Call them at 800-223-1468 or visit their web site at https://psi-team.com.

Inline Process Refractometers in Beer Brewing

Inline Process Refractometers in Beer Brewing

Introduction

PR-43-AThe first step in the beer brewing process is the preparation of malt grains. The extract received fromthe processing of this raw material is called wort. The second step is fermentation by yeast. The last steps are conditioning and final filtration. After filtration, the beer is ready for bottling.

Instrumentation and Installation

Vaisala K-PATENTS® Sanitary Process Refractometer PR-43-A is used at many stages of the brewery process to determine in real-time and accurately the concentration of dissolved solids. The refractometer takes an optical measurement of the refractive index of a solution and its output can be calibrated in Plato, Brix, Balling, gravity or density, depending on the preference of the brewery.
The Sanitary Refractometer is available with 3-A Sanitary and EHEDG certifications and it withstands CIP/SIP cleaning and rinsing of the facilities.

1. Mash tank

Mashing is the process of mixing the crushed malt with very hot water. In this process, the malted grain breaks down to create enzymes, which become active when exposed to water at a specific temperature. These active enzymes convert the starches into sugars. The resultant sugary liquid is known as the wort. Mashing is a crucial step as it determines the final structure of the beer.
In the mashing stage, the refractometer is used to measure the concentration of the mash in water at the outlet pipe to maintain a consistent concentration. Automatic prism wash with steam or high-pressure hot water is recommended for this application.

2. Lauter Tun

Lauter tun is a vessel used to separate the extracted wort from the spent grain. The solids in the lauter tun are rinsed with water to separate the clear liquid wort from the solids. The liquid concentration gradually decreases during the rinsing.
At the lauter tun the refractometer’s output signal is used to detect the shut-off point for rinsing, thus preventing excessive use of water. Automatic prism wash with steam or high-pressure water is recommended for this application.

3. Wort Boiler (Brew Kettle)

In the wort boiler the wort is pasteurized, and its flavor is adjusted by the addition of hops (or other flavors such as ginger or molasses). The brew is boiled until a certain strength or gravity is achieved. This step is essential for the quality of the final beer.
The refractometer is installed directly on the wort boiler to measure the wort strength/gravity. It provides an instant feedback when the wort has reached its required strength. No by-pass arrangements are required. The purpose is to eliminate sampling, optimize the boiling time, and to improve beer consistency and quality. Automatic prism wash with steam or high-pressure water is recommended for this application.

4. Hot Wort from Boiler to Whirlpool

The refractometer is installed in the wort boiler outlet to monitor the quality of the wort. Before the wort goes on to the next stage, solids are removed from the liquid by using a whirlpool. All hops and other solids are forced to the center of the whirlpool. When the whirlpool is stopped, the solids settle at the bottom, forming a fairly solid central cone. The liquid can then be drained off.

5. Chilled Wort from Heat Exchanger

The wort is cooled down to the correct temperature for the yeast. The refractometer is used for quality control, by a way of measuring the cold wort before it enters the fermentation process. This is an alternative measurement to point 4.

6. Fermentation

Fermentation starts when the yeasts are added to the wort. The yeast converts the sugars and amino acids into alcohol and carbon dioxide. The fermenting reaction is slow, and its progress must be monitored to determine the end point.
The spent yeast settles at the bottom of the tank and is frequently removed. This process helps to clarify the beer.
In fermentation, The refractometer continuously detects the changes in refractive index because of the conversion of sugars into alcohol. This allows monitoring the conversion rate, the degree of fermentation and provides an indirect measurement of the alcohol volume (%) for determining the end point (see also application note Alcoholic Fermentation).

7. Filtering

After fermentation, the beer is let to rest, so that the suspended dead yeast settles at the bottom. This conditioning process helps the maturing of the beer. The refractometer provides a quality control measurement for the wort filtering output.

8. Packing and Interface Detection

Packing is typically done by filling the beer into bottles or aluminum cans via a filling machine. Some brewers may use the same filling line for different products. In this case a Clean-In-Place (CIP) operation is required between the filling of each product.

At the filling line, the refractometer instantly detects the product-to-product and product to-CIP cleaning interfaces in bottling. The refractometer output signal can be utilized for quality control monitoring, and to ensure correct product-to-bottle selection and a product quality within specification.

If the same filling station is used for different products, the refractometer can be used for automated monitoring and controlling of the CIP cleaning process, allowing products to be switched freely. This results in increased productivity, without compromising the end product’s quality and safety.

For more information about the use of process refractometers, contact Piping Specialties, Inc. / PSI Controls by calling 800-223-1468 or visit their web site at https://psi-team.com.

Reprinted with permission from Vaisala/K-Patents.