Showing posts with label Rhode Island. Show all posts
Showing posts with label Rhode Island. Show all posts

Tuesday, August 11, 2020

Sanitary Process Refractometers for Food, Beverage & Dairy Industries: The Vaisala K-PATENTS PR-43A

Vaisala K-PATENTS® PR-43A Models PR-43-AC, PR-43-AP, PR-43-APT

Vaisala K-PATENTS® Sanitary Process Refractometers PR-43-AC for hygienic installations in small pipe line sizes of 2.5 inch and smaller; PR-43-AP for hygienic installations in large pipes, tanks, cookers, crystallizers and kettles and for higher temperatures up to 150°C (300 °F); and the PR-43-APT for flush mounting installations in cookers, cooling crystallizers and other vessels that have scrapers or mixers.

Sanitary Refractometer Applications:

Extraction, evaporation, brewing, distilling, sugar dissolving, blending, filling. Alcohol, rum, whiskey, brandy, vodka, molasses, liquors, cider, alcoholic beverages, pre-mixed liquors. Beer and malt beverages, wort, cut beer, root beer. Juices, blended vegetable and fruit juices and nectars, still drinks, vegetable and juice concentrates, iced tea and coffee, instant coffee and tea. Soft drinks, energy and sport drinks, beverage base. Wines, grape must.

Sanitary Refractometer 3A Approval:

The Sanitary refractometer PR-43-A is Sanitary 3-A approved to meet the highest hygiene requirements of food production. The 3-A Symbol assures that the Sanitary Refractometer

PR-43-A conforms to 3-A Sanitary Standard Number 46-04 for Refractometers and Energy-Absorbing Optical Sensors for Milk and Milk Products and it has passed the independent Third Party Verification inspection for 3-A Symbol authorization.

For more information about Vaisala K-PATENTS products in New New England, contact Piping Specialties, Inc. / PSI Controls. Call them at 800-223-1468 or visit their web site at https://psi-team.com.

Wednesday, July 29, 2020

Anderson Greenwood Instrument Valve Solutions

Anderson Greenwood Instrument Valves
TESCOM Anderson Greenwood Instrumentation serves many industries and applications. The product line includes a comprehensive range of isolation valves (including root and gauge models), instrument manifolds (for pressure, level and flow measurement), and purpose-designed Instrument Enclosure Systems.

Products include:
  • Hand Valves
  • Gauge Valves
  • Primary Isolation Gauge Root Valves
  • Pressure Manifolds
  • Flow and Level Manifolds
  • IntelliMount™ Systems
  • Saddlemount 
  • Keyblok Manifolds 
  • Monoflange
  • Instrument Protection Systems
  • Modular Mounting Systems
  • ACCU-Mount™ Systems

For more information, contact Piping Specialties, Inc / PSI Controls. Call them at 800-223-1468  of visit their website at https://psi-team.com.

Monday, July 20, 2020

Refractometer Application in Kraft (Sulphate) Pulp Process: Digester Washing Zone and Blowline

Refractometer Black Liquor

Introduction

The first operation in the Kraft pulping process involves the extraction of cellulose from wood by dissolving the lignin that binds the fibers together. This is done in a strongly alkaline solution.

This process is known as cooking. After the wood pulp is obtained, it is washed and bleached to obtain the fibrous product.

To optimize the pulp chemical consumption and water usage, the black liquor concentrations have to be measured before and after washing.

Application

Incoming wood is debarked and chipped to an optimal size to minimize fibre damage, and to maximize the impregnation with the cooking liquor. The chips and the cooking liquor are fed into a large vessel known as digester. The pulping reaction takes place under pressure and at a high temperature.

After cooking, the pulp passes through a blow line to the blow tank and then to a washing section. The diffuser washers separate the black liquor from the fibers by washing them with a washing liquor or water. The products from the fiber line are a clean pulp, and a diluted black liquor known as weak liquor.

The washed pulp is then screened before it is sent to the bleaching plant, and the weak black liquor passes from the washing section to the chemical recovery process.

Instrumentation and installation

The K-Patents SAFE-DRIVE Refractometer PR-23-SD measures in real-time the Total Dissolved Solids (TDS) content in black liquor.

K-Patents PR-23-SD
The K-Patents refractometer is installed in-line in different points after the digester. TDS measurement
in the blow pulp suspension after the digester enables monitoring of the diffuser operation. Together with other measurements (e.g. filtrate and flush liquor) this provides the mill with the ability to control the performance of the washing zone in the digester. In addition, TDS measurement in the blow line allows the performance of the digester to be monitored, ensuring that it yields the correct concentration. The combination of these measurements facilitates continuous calculation of the mass balances of the digester.

The refractometer’s measurement is unaffected by bubbles, particles, consistency, flow, ion changes, pH, temperature, pressure, color or turbulent flow. The measurement surface is periodically cleaned using an integrated and automatic prism cleaning system.

The K-Patents PR-23-SD 

Black liquor concentration measurement with the SAFE-DRIVE process refractometer helps to increase washing efficiency, obtain a consistent pulp quality, reduce bleaching chemical consumption and environmental load, and increase evaporation efficiency.


For more information, contact PSI Controls (Piping Specialties, Inc.). Call them at 800-223-1468 or visit their website at https://psi-team.com.

Thursday, July 16, 2020

An Innovative and Unique Solution for Measuring Dry Gas Flow in Wet Gas Environments

Kurz Wet Flow

The Problem - Reading Dry Gas Flow in a Wet Gas Environment


Irrespective of any single manufacturer's claim, daily and seasonal temperature changes in wet gas environments cause erratic high flow readings in standard thermal flow meters. With standard thermal flow meters, as the flow flow temperature decreases, more water condenses out of the gas causing the standard thermal flow meter to misread the water contacting the sensor as dense air. Within an active condensing gas flow, the low overheat (less than 50°C) of standard flow meter products make them incapable of accurately reading the dry gas flow within a wet gas environment.

Kurz Instruments Develops a Practical Implementation of the Leidenfrost Effect to Overcome the Problem


Leidenfrost Effect
The Leidenfrost Effect, named after 18th Century scientist Johann Gottlob Leidenfrost, is a phenomena that happens when liquid contacts a surface significantly hotter than the liquid’s boiling point.  A vapor layer is created between the liquid and the surface that keeps the liquid suspended, delaying the rate of evaporation. 

Kurz Instrument developed an innovative solution. By maintaining a high signal-to-noise ratio and a high sensor overheat, mist particles vaporize on impact with the heated sensor. Thus, by employing the Leidenfrost Effect, the leading edge of larger droplets vaporize to steam, which diverts the remaining water around and away from the heated sensor. The unique design of the WGF allows it to accurately monitor the dry gas component in a wet gas flow regardless of changing condensation levels.

The Kurz WGF flow meter for condensing gas environments includes features that allow them to outperform all other currently available thermal mass flow meters. Kurz was the first thermal mass flow meter manufacturer offering accurate and reliable condensing gas flow measurements. Their unique design centers around a high 300°C sensor overheat capability. The design also provides sensor overheat protection at zero flow through the incorporation of a unique temperature control and power limiting design. As a result, the Kurz WGF is not affected by water droplets in the flow stream. This unique technology establishes Kurz flow meters with WGF technology as the only thermal flow devices suitable for biogas and condensing gas environments found in digesters, landfills, animal feeding operations, mining, and wet stacks.

To learn more about The Leidenfrost Effect and how it applies to Kurz flow meters, visit this page.


To learn more abount Kurz Instrument products, call PSI Controls (Piping Specialties, Inc.) at 800-223-1468, or visit their web site here - https://psi-team.com.

Thursday, June 18, 2020

Process Refractometers Improve Production and Quality of Phosphoric Acid Production

Phosphoric Acid Production
Phosphoric acid is an important product used in industrial applications such as the manufacture of agricultural phosphate fertilizers, detergents, pesticides, metal coating, etc. Due to its non-toxic and mildly acidic nature, phosphoric acid is also used in other applications including food flavoring, soft drinks, pharmaceuticals, dental products, cosmetics, and skin care products.

Phosphoric acid is produced by mining the naturally occurring phosphate rock and processing it via a wet process or a thermal process. The concentration of the acids during the wet process can be measured inline with the process refractometers, such as those manufactured by K-Patents.

To learn more about where and how these refractometers are used in wet process phosphoric acid production, visit the PSI Controls web page. 


Piping Specialties, Inc. / PSI Controls
800-223-1468

Thursday, June 11, 2020

Wiring the AMETEK Drexelbrook Universal IV RF Admittance/Capacitance Continuous Level Measurement System


The video above describes how to wire the Drexelbrook Universal IV  Continuous Level Measurement System.

The Universal IV level system is the most advanced RF continuous level measurement system available. It includes worldwide hazardous location approval and is immune to vapor, dust and foam interference as well as to tank obstructions such as nozzles, ladders, pipes and agitators. The Universal IV features standard display/keypad, auto-ranging capabilities, local or remote installation, as well as state of the art measurement technology providing unmatched stability and accuracy. It is ideal for a wide array of level applications in industries such as oil and gas refining, water and wastewater along with the pharmaceutical and biotech industries.

Drexelbrook Universal IV
The Pro Model
integrates the RF Admittance technology with the versatility of Cote-Shield technology.  The Cote-Shield technology is designed to ignore coatings on the probe and measurement span of 1" to 800'. 

The Lite Model is the entry level RF Capacitance measurement system without Cote-Shield capabilities, can be used in non-coating conductive liquids and insulated coating applications where Cote-Shield is not required and offers a level measurement range up to 20' typically.

Universal IV RF Continuous Level Measurement System Features
  • Easy one-time calibration
  • Low cost of ownership, no maintenance and no moving parts to wear out
  • Immune to tank obstructions such as nozzles, ladders, pipes and agitators
  • Available as intrinsically safe systems
  • Output: 4-20 mAdc, HART. Compatible with HART.
  • Supply voltage: 13-30 VDC, 2 wire loop powered

Monday, April 27, 2020

New Product Line: Max-Air Technology Valve Actuators and Controls

Piping Specialties / PSI Controls is please to introduce Max-Air Technology to its family of products.

Max-Air’s full line of pneumatic control products – including their industry recognized rack and pinion actuators – provide cost-effective solutions for simple on/off control or more complicated flow requirements such as diverting or multi-port applications. Their patented adjustable dual travel stops provide the greatest degree of control in the industry at ±10 degrees on each end of the stroke. To complement their actuators, they have a complete range of control accessories including solenoid valves, limit switches, positioners, and a wide assortment of automation hardware. In addition, Max-Air offers best-in-class assembly services and turn-key automation packages to minimize installation time and simplify project sourcing.

Learn more and download the Max-Air Product Portfolio from this link.

For more information, contact Piping Specialties. Call us at 800-223-1468 or visit out website at https://psi-team.com.

Saturday, March 28, 2020

Process Control Case Study: Refinery Explosion and Fire


A case study of the 2018 Husky Energy refinery explosion in Superior, WI. This animated video recaps all the events and circumstances leading up to an explosion starting in the Fluid Catalyst Cracker (FCC). The key factor was an eroded sliding gate valve that allowed a protective layer of reactor catalyst to disappear. This allowed air and hydrocarbon to blend, forming a combustible mixture, and setting the stage for a chain reaction of events. This video, courtesy of the Chemical Safety Board (csv.gov) is an excellent educational reference and should be viewed by engineering, maintenance, and plant management personnel everywhere.

Piping Specialties, Inc. / PSI Controls
https://psi-team.com
800-223-1468

Thursday, March 26, 2020

Markets and Applications for Thermal Flow Meters

Thermal Flow MeterInsertion, in-line, multipoint & portable thermal flow meters are used for monitoring and measuring industrial gas flows for stacks, ducts, flares, emissions, biogas, chemical processes, condensing gases, and pressurized gases. They provide the dependability required for most challenging industry requirements and are perfect for applications that call for reliability, exacting accuracy, cost-effectiveness. Below are the primary industries and their associated applications where thermal flow meters are found.

Coal Power

The increasingly stringent environmental and pollution requirements in the U.S. have resulted in a declining use of coal. However, coal remains the most common fuel source for generating power (mostly in specific industry applications), and more than 90% of the coal mined in the U.S. is used for generating power.

Coal Power Metering Applications Include:

  • Hot and cold pulverizer Air
  • Primary Air
  • Fuel air flow   
  • Secondary or underfire Air   
  • Tertiary or overfire Air
  • Baghouse airflow
  • Exhaust/emissions flow

Incinerators

Incineration (also called gasification, pyrolysis, plasma arc, and waste‐to‐energy) is the thermal treatment of disposed waste materials, converting it to ash, flue gas, and heat. Incineration reduces the original waste mass by up to 85% and the volume up to 95%. Flue gases are cleaned or burned before the final emissions are released into the atmosphere.

Specific Incinerator Installations:

  • Monitoring primary and secondary air to the furnace
  • Measuring combustion air to a boiler
  • Monitoring stack flue gas
  • Measuring and monitoring emissions

Landfills

Landfill gas falls into five basic monitoring categories: soil gas, near surface gas, emissions, ambient air, and facility air. Soil gas, emissions, and facility air are environments suited for thermal mass flow devices. Thermal technology is excellent for measuring extremely low flows and is known for having very low pressure drop.

Standard thermal flow meters do not work well in condensing gas environments, such as those found in landfill methane recovery systems. The unpredictable moisture levels caused by leachate, rain, temperature, and humidity add to the accuracy issues related to wet gas flow measurements.

Specific Landfill Installations:

  • Measuring emissions
  • Air monitoring spot checks across cells
  • Measuring gas conversion utilized in electricity generation
  • Supporting fuel cell management
  • Post‐combustion emissions

Metal Industries

This category includes primary and secondary industrial metal sources such as smelters, foundries, metal refineries, steel mills, and metal recyclers.

Specific Installations in Metal Industries:

  • Measuring furnace air
  • Measuring combustion air to blast furnace
  • Natural gas, combination air to blast furnace and reheat furnace
  • Monitoring exhaust, stack, and emission gases
  • Baghouse flow
  • Argon or chlorine gas flow, SNIF process in Basic Oxygen Furnace (BOF) area
  • EPA Method 14 stack flow (aluminum only)
  • Nitrogen blanketing
  • Continuous caster pneumatic systems
  • Coater line exhaust flow

Petroleum & Petrochemicals

The petrochemical industry creates products from petroleum that includes oil and gas. But petroleum is also used to create ethylene, propylene, benzene, toluene, and xylene — all of which provide the building blocks for solvents, dyes, detergents, fertilizers, adhesives, rubbers, plastics, resins, synthetic fibers, lubricants, and gels.

Specific Installations in Petroleum & Petrochemicals:

  • Measuring combustion air to a boiler
  • Measuring gas to flares
  • Monitoring stack flue gas
  • Measuring emissions (CEM)
  • Measuring combustion fuel‐to‐air ratios
  • Monitoring low‐pressure hydrocarbon storage vessel vent lines
  • Monitoring high‐pressure distillation column off‐gases
  • Monitoring very‐low flow for stuck open relief valves alarms
  • Monitoring knockout drum relief valve switch to the flare

Pulp & Paper

Creating paper pulp relies on a careful balance of low velocity air flows among the various processes. For example, the recovery boiler following the digester must be modulated to follow changes in the digester load. Other imbalances can create excessive amounts of pollutant gases, reduce chemical recovery efficiency, reduce the boiler’s steam production, create extra soot to coat boiler tubes, or cause excess corrosion problems for boiler components.

Specific Installations in Pulp & Paper:

  • Measuring combustion air to a boiler
  • Measuring primary/secondary/tertiary air to a recovery boiler
  • Monitoring stack flue gas
  • Measuring stack emissions
  • Monitoring digester gases and aeration air
  • Measuring inlet combustion air to gas turbine generator sets
  • Controlling tight fuel‐to‐air tolerances, such as with natural gas
  • Measuring turbine exhaust gases
  • Measuring overfire and underfire air

Wastewater

The primary applications in the wastewater environment are measuring blower air to each pool in the aeration basin and measuring digester gas flow. Operating the aeration blower accounts for up to 60 percent of all power consumed at a wastewater site, and proper air management can lead to massive savings in energy usage and equipment efficiency. Monitoring the health of the digester can provide indicators that minimize disruptions and leaks.

Flow Metering Applications in Wastewater Include:

  • Header (blower) air flow
  • Individual pool air flow in the aeration basin
  • Digester gas production
  • Precombustion engine fuel flow
  • Air/fuel to boiler or engine
  • Flare gas flow
For more information on the application of thermal flow meters in New England, contact PSI Controls. Call them at 800-223-1468 or visit their website at https://psi-team.com.

Wednesday, March 18, 2020

Severe Service Ball Valve Coatings from MOGAS


Coating is an integral part of MOGAS severe service ball valves. These valves are used in the harshest applications in power, chemical, heavy oil and mining operations. Coating extends valve life, makes them operate longer, and function at peak efficiency.

A successful coating is more than just powder on metal. It's also the process. Over the decades, MOGAS has continually led the severe service valve market in process and material innovation. Because of  this, MOGAS customers benefit through higher valve performance, greater safety, and lower total cost of ownership.

For more information on MOGAS severe service valves, contact Piping Specialties, Inc. Call them at 800-223-1468 or visit their web site at https://psi-team.com.

Tuesday, February 25, 2020

ARCA Control Valves in New England


ARCA develops, manufactures, and markets control valves on an international scale primarily for the chemical, food, power, and oil and natural gas industries.

High-performance control valves from ARCA are capable companions in industrial and large-scale power plants by ensuring safe and reliable operation and can be used in all high and low-pressure steam, oil, gas, water/boiler feedwater, and condensate circuits.

Oil and natural gas are the primary sources of energy driving the global economy. ARCA valves have helped ensure production and process reliability in the oil and natural gas industries for many years, and a wide variety of precision-engineered control valves are available that include DN15 (1/2) to DN600 (24") and PN16 to PN400 (ANSI 150-2500) sizes as well as special-purpose valves for all media handled in these areas.

ARCA valves are also indispensable in steel production. Steel production and processing require valves that offer ultra-high performance and a long service life.

Integrated in the bypass section of turbo-compressors, ARCA valves reliably carry out multiple tasks simultaneously by assisting during the start-up and shut-down phases of the compressor.

Concentrated Solar Power plants convert solar radiation into electrical energy. Systems that use  thermal oils as a heat-transfer medium produce temperatures that can reach 400 °C at approximately 40 bar in the solar array. Such applications integrate reliable ECOTROL® 6H high-pressure valves, which feature a bellows seal.

The BIOVENT® control valve developed for the food and pharmaceutical industry, for example, is available in many designs and connection layouts and with drives and positioners in stainless steel to cater to all applications.

For more information on ARCA Control Valves, contact Piping Specialties, Inc. Call them at 800-223-1468 or visit their web site at https://psi-team.com.

Monday, January 20, 2020

FMCW (Frequency Modulated Continuous Wave) Open Air Radar Level Measurement

Non-contact level measurement using radar transmitters for the continuous, contactless level measurement of liquids, pastes, granulates, powders and other solids in a wide variety of industries.


Frequency Modulated Continuous Wave

OPERATING PRINCIPLE
  • The radar principle used is FMCW (Frequency Modulated Continuous Wave). The FMCW radar emits a high frequency signal whose frequency increases linearly during the measurement phase (called the frequency sweep). 
  • The signal is emitted via an antenna, reflected off the product surface and received with a time delay, t. 
  • Time delay, t=2d/c, where d is the distance to the product surface and c is the speed of light in the gas above the product. 
  • For further signal processing the difference Δf is calculated from the actual transmitted frequency and the received frequency. 
  • The difference is directly proportional to the distance.
  • A large frequency difference corresponds to a large distance and vice versa. 
  • The frequency difference f is transformed via a Fast Fourier Transformation (FFT) into a frequency spectrum and then the distance is calculated from the spectrum.
  • The level results from the difference between the tank height and the measured distance.

For additional information, call Piping Specialties, PSI Controls at 800-223-1468 or visit their web site at https://psi-team.com.

Thursday, January 9, 2020

Piping Specialties Valve Automation Services


By combining years of experience with the industries top manufacturers of valves, valve actuators, and controls, Piping Specialties has established itself as one of New England's premier valve automation centers. When it comes to design, fabrication, assembly and installation of any valve actuation/automation project, PSI's application experience, engineering know-how, and highly trained technicians makes them an easy choice to be your preferred valve automation partner.

For more information visit https://psi-team.com or call 800-223-1468.

Friday, December 20, 2019

Custom 24" Pressure Balance Universal Elbow Expansion Joint by Hyspan

Pressure Balance Universal Elbow Expansion Joint

Elbow pressure balanced expansion joints (also known as corner relief expansion joints) are used on piping system where direction changes and the force exerted on piping and /or associated equipment from pressure thrust is intolerable. This arrangement uses dual connected bellows at line pressure acting in opposite directions.

Elbow pressure balanced expansion joints are designed to compensate for axial movement due to these external forces, thereby protecting the system. 

Hyspan, a world leader in the manufacture of bellows expansion joints, packed slip expansion joints and ball joints for industrial applications. Hyspan produces a complete line of flexible tubular products that meet the needs of diverse industries ranging from scientific research to oil refining.

The image above of a 24” NPS Hyflex pressure balance universal elbow expansion joint that is almost 15 feet long used in a geothermal power plant illustrates their ability to engineer and manufacture custom products to meet any need.

For more information about expansion joints or Hyspan products, contact Piping Specialties, Inc. by calling 800-223-1468 or visit their web site at https://psi-team.com.

Friday, October 18, 2019

Setting Up and Calibrating the Drexelbrook MultiPoint II Level Switch


This video demonstrates how to calibrate and set the Drexelbrook MultiPoint II level switch.

The Drexelbrook Multipoint II level switch product offers three control points located anywhere along a single vertically inserted level sensing element. This level switch can be used to provide high level, high-high level, and low level control points. It also provides an adjustable differential feature for one of the control points for pump on/pump off control making it ideal for sump level control. It is designed to be intrinsically safe for Class I Groups A,B,C,D and Class II Groups E,F,G (Div. 1 and 2). The unit is mounted in FM approved explosion proof housing. The MultiPoint II has no moving parts and the need for maintenance is therefore eliminated. The Drexelbrook MultiPoint II is an economical solution for processes requiring multiple operating points.

For more information about level instrumentation, contact Piping Specialties, Inc. / PSI Controls by calling 800-223-1468 or visit their web site at https://psi-team.com.

Wednesday, October 16, 2019

Inline Process Refractometers in Beer Brewing

Inline Process Refractometers in Beer Brewing

Introduction

PR-43-AThe first step in the beer brewing process is the preparation of malt grains. The extract received fromthe processing of this raw material is called wort. The second step is fermentation by yeast. The last steps are conditioning and final filtration. After filtration, the beer is ready for bottling.

Instrumentation and Installation

Vaisala K-PATENTS® Sanitary Process Refractometer PR-43-A is used at many stages of the brewery process to determine in real-time and accurately the concentration of dissolved solids. The refractometer takes an optical measurement of the refractive index of a solution and its output can be calibrated in Plato, Brix, Balling, gravity or density, depending on the preference of the brewery.
The Sanitary Refractometer is available with 3-A Sanitary and EHEDG certifications and it withstands CIP/SIP cleaning and rinsing of the facilities.

1. Mash tank

Mashing is the process of mixing the crushed malt with very hot water. In this process, the malted grain breaks down to create enzymes, which become active when exposed to water at a specific temperature. These active enzymes convert the starches into sugars. The resultant sugary liquid is known as the wort. Mashing is a crucial step as it determines the final structure of the beer.
In the mashing stage, the refractometer is used to measure the concentration of the mash in water at the outlet pipe to maintain a consistent concentration. Automatic prism wash with steam or high-pressure hot water is recommended for this application.

2. Lauter Tun

Lauter tun is a vessel used to separate the extracted wort from the spent grain. The solids in the lauter tun are rinsed with water to separate the clear liquid wort from the solids. The liquid concentration gradually decreases during the rinsing.
At the lauter tun the refractometer’s output signal is used to detect the shut-off point for rinsing, thus preventing excessive use of water. Automatic prism wash with steam or high-pressure water is recommended for this application.

3. Wort Boiler (Brew Kettle)

In the wort boiler the wort is pasteurized, and its flavor is adjusted by the addition of hops (or other flavors such as ginger or molasses). The brew is boiled until a certain strength or gravity is achieved. This step is essential for the quality of the final beer.
The refractometer is installed directly on the wort boiler to measure the wort strength/gravity. It provides an instant feedback when the wort has reached its required strength. No by-pass arrangements are required. The purpose is to eliminate sampling, optimize the boiling time, and to improve beer consistency and quality. Automatic prism wash with steam or high-pressure water is recommended for this application.

4. Hot Wort from Boiler to Whirlpool

The refractometer is installed in the wort boiler outlet to monitor the quality of the wort. Before the wort goes on to the next stage, solids are removed from the liquid by using a whirlpool. All hops and other solids are forced to the center of the whirlpool. When the whirlpool is stopped, the solids settle at the bottom, forming a fairly solid central cone. The liquid can then be drained off.

5. Chilled Wort from Heat Exchanger

The wort is cooled down to the correct temperature for the yeast. The refractometer is used for quality control, by a way of measuring the cold wort before it enters the fermentation process. This is an alternative measurement to point 4.

6. Fermentation

Fermentation starts when the yeasts are added to the wort. The yeast converts the sugars and amino acids into alcohol and carbon dioxide. The fermenting reaction is slow, and its progress must be monitored to determine the end point.
The spent yeast settles at the bottom of the tank and is frequently removed. This process helps to clarify the beer.
In fermentation, The refractometer continuously detects the changes in refractive index because of the conversion of sugars into alcohol. This allows monitoring the conversion rate, the degree of fermentation and provides an indirect measurement of the alcohol volume (%) for determining the end point (see also application note Alcoholic Fermentation).

7. Filtering

After fermentation, the beer is let to rest, so that the suspended dead yeast settles at the bottom. This conditioning process helps the maturing of the beer. The refractometer provides a quality control measurement for the wort filtering output.

8. Packing and Interface Detection

Packing is typically done by filling the beer into bottles or aluminum cans via a filling machine. Some brewers may use the same filling line for different products. In this case a Clean-In-Place (CIP) operation is required between the filling of each product.

At the filling line, the refractometer instantly detects the product-to-product and product to-CIP cleaning interfaces in bottling. The refractometer output signal can be utilized for quality control monitoring, and to ensure correct product-to-bottle selection and a product quality within specification.

If the same filling station is used for different products, the refractometer can be used for automated monitoring and controlling of the CIP cleaning process, allowing products to be switched freely. This results in increased productivity, without compromising the end product’s quality and safety.

For more information about the use of process refractometers, contact Piping Specialties, Inc. / PSI Controls by calling 800-223-1468 or visit their web site at https://psi-team.com.

Reprinted with permission from Vaisala/K-Patents.


Wednesday, September 25, 2019

MOGAS Valve Selection Guide

For over 40 years MOGAS has designed and manufactured valves exclusively for the severe service market.  No leakage, limited maintenance and superior reliability make a MOGAS valve the easiest and most cost-effective valve to operate. Their portfolio of valve solutions lets you choose the design trim, materials, and coatings that provide your severe service application the best protection.

MOGAS is well-known in the power generation and process industries for solving critical problems that routinely plague these plants: leaking valves; seat erosion; blown packing; and the inability to isolate critical equipment.

Proudly made in the USA, each MOGAS valve carries an application-specific performance guarantee.



Piping Specialties, Inc - PSI Controls
800-223-1468
https://psi-team.com

Thursday, August 22, 2019

Why Use LINK-SEAL®?


LINK-SEAL


LINK-SEAL® is a modular elastomer sealing system that creates a permanent, hydrostatic seal for almost any cylindrical object as it traverses a barrier. The modular LINK-SEAL ® seals are the primary technique for sealing tubes of any size continuously through walls and ceilings. Indeed, any cylinder-shaped item can be secured against water, soil or backfill material rapidly, readily and permanently.

LINK-SEAL® FEATURE AND BENEFITS


    LINK-SEAL
  • Install in up to 75% less time compared to lead-oakum joints, hand-fitted flashings, mastics, or casing boots.
  • Rated at 20 psig (40ft of head), which exceeds the performance requirements of most applications.
  • Designed for use as a permanent seal. Seal elements are specially compounded to resist aging and attack from ozone, sunlight, water, and a wide range of chemicals.
  • Standard fasteners have a two-part zinc dichromate and proprietary corrosion inhibiting coating. Corrosion resistant 316 stainless steel available for maximum corrosion protection.
  • NSF 61 and Factory Mutual Fire Approved materials available. Also carry a wide variety of approvals from various Federal agencies, associations, code groups, laboratories, and organizations.
  • Manufactured in an ISO 9001certified facility.
  • 16 sizes, color-coded EPDM, Nitrile, and Silicone elastomers may be used with various hardware options to match performance characteristics with service conditions.

LINK-SEAL® SPECIFICATIONS

  • Pressure resistant to 20psig (40 ft of head)
  • Standard  — EPDM – rubber (black)
  • Oil Resistant — Nitrile rubber (green)
  • Temperature resistant — Silicone rubber (gray)
  • Low Durometer for fragile pipe — EPDM rubber (blue) Shore 40 ± 5
  • Hardware Options - S316 Stainless Steel and Zinc Dichromate Coated Steel (1470 hr salt spray tested) hardware

LINK-SEAL® APPLICATIONS

Mechanical Contractors - Interior Piping Systems, Manhole Pipe Entry Seals, Waste Treatment Plants, Cased Road Crossings, Thermal Storage Systems, Fire Protection Wall Penetrations, Cased Railroad Crossings, Electrical Isolation of Pipes, Precast Concrete Vault Seals, Insulated Pipe Seals, Dual Containment Seals, Marine Applications, Noise Dampening, Flexible Sign & Pole Supports, Electrical Isolation of Pipe Supports, Mining, Pulp & Paper, Decorative Fountains, Pool Contractors, Electrical Contractors, Waste & Water Treatment, Telecommunications, Valve Pits, Refrigeration Buildings, Guard Post Assemblies, Power Generation Dams, Offshore Oil Rigs, High Pressure Tank Guards, Underground Steel Tanks, Precast Concrete Manufacturers, Perimeter Berm Installations Around Tank Farms, Flow Restrictions in Sewer Maintenance, Fluid Overflow Devices, Noise and Sway Dampener, Through Deck Fire Breaks, Bridge Construction, Septic Tank Installations, Coal Preparation Plants, Tunneling Operations.

For more information on LINK-SEAL® modular wall seals, contact Piping Specialties, Inc. Call them at 800-223-1468 or visit their web site at https://psi-team.com.

Thursday, July 25, 2019

A-T Controls / TRIAC Valves and Actuators from Piping Specialties, Inc.


A-T Controls, Inc. designs, develops and manufactures valves, actuators and valve control products. Founded in 1994, A-T Controls currently operates out of the primary facility in Cincinnati, Ohio and another in Stafford, Texas with several sales offices throughout North America. Their products are used in virtually every industry including: Oil & Gas, Refining, Petrochemical, Chemical Processing, Pulp & Paper, Mining, Transportation, Food and Beverage, Pharmaceuticals, Marine, HVAC, and Power.

AT CONTROLS / TRIAC PRODUCTS:
  • Ball Valves
  • Butterfly Valves
  • Rack & Pinion Pneumatic Actuators
  • Electric Actuators
  • Heavy Duty / Scotch Yoke Actuators
  • Floor Mounted Damper Drives
  • Gear Operators
  •  Limit Switches

For more information, contact Piping Specialties, Inc.
https://psi-team.com
800-223-1468

Tuesday, July 9, 2019

Plugged Chute Detection for Granular Materials

Intellipoint RF Admittance Plugged Chute Detector
Detecting plugs in granular material conveying chutes is difficult due to the heavy, abrasive materials and dusty, coating nature of the environment. Many technologies used to detect material movement in chutes have considerable downside. For instance, regulatory requirements and source disposal problems make nuclear gauges an unappealing choice, insertion type sensors are quickly damaged by falling material, microwave sensors require two mounting windows to operate, and vibrating chute walls can damage electrical components.

A better alternative is the Drexelbrook Intellipoint RF Admittance Plugged Chute Detector. Its design allows for the reliable detection of a plugged chute, reducing costly downtime and material spill over.

The Drexelbrook plugged chute detector, also known as a blocked chute switch, reliably detects the presence or absence of bulk solids material flowing through chutes in an economical way without sacrificing flow speed. If process material stops flowing due to a plugged condition, the flush mounted capacitance sensing element will alarm, allowing further action to occur (alerting an operator, shutting down a conveyor belt, etc.). The Cote shield circuitry ignores even heavy coatings, and the flush mounted sensing element does not interfere with material flow. There are no moving parts to wear or jam, and thus, it requires virtually no maintenance. In fact, the Intellipoint Mean Time To Failure (MTTF) is calculated to more than 110 years!

There are no regulatory requirements with the adoption of the Intellipoint, and system electronics can be mounted remotely to eliminate vibration concerns. Due to the rugged sensor design this point level switch is ideal for coal, wood chips, ores and powders. This point level switch automatically recognizes and ignores coatings to prevent false alarms and, as it is flush mounted through a chute wall, nothing protrudes into the chute to interfere with or obstruct material flow.

Choosing the Intellipoint provides reliable detection of plugged chutes that will keep your plant running smoothly and virtually eliminates spills occurring due to plugged conditions.

Key Features
  • Curved and flat sensors are available
  • DPDT relay dry contacts at 5A, 120VAC
  • Less maintenance than other technologies; no moving parts to hang up or wear out
  • Uses Drexelbrook PML series electronics
  • Supply voltage: 19-250 VAC, 18-200 VDC, Auto-detecting without jumpers
For more information, contact Piping Specialties, Inc. by calling 800-223-1468 or by visiting https://psi-team.com.