Cost-effective, Non-contact Ultrasonic Level Measurement from Drexelbrook

USonic Level Transmitter

Affordable, 2-Wire Level Transmitter with the performance and features of premium, line-powered systems.

DOWNLOAD THE USONIC DATA SHEET HERE

USonics ultrasonic technology level products from the Drexelbrook family offers a cost-effective two-wire and line powered versions for the non-contact measurement of liquids and slurries for level, distance, volume, and open channel flow.   Level, size, volume, and open-channel flow measurements are easily configured via a menu-driven display.   The USonic level transmitter has a 4-20 mA two-wire HART output signal and is suitable for all Class I Div. 1, Zone, I.S., or explosion-proof locations.

For more information contact PSI Controls / Piping Specialties by calling 800-223-1468 or visit https://psi-team.com.

The Flow Safe F9000 "SurgeFlow" Liquid Surge Relief Valve

Liquid product pipelines must be protected from liquid surges. Surges are caused by pump failure, rapid block valve closing, non-return check valve hard-shutting, emergency shutdown of a tank or loading system, or even a pump coming on or tripping. The magnitude of surge pressures varies, some virtually undetectable to those severe enough to cause significant damage. These propagating waves, either increasing or decreasing rapidly, are commonly known as a transient hydraulic surge of water hammer that can cause severe damage to liquid product pipelines, vessels, flanges, valving, and associated equipment. 

The Flow Safe SurgeFlow series has been developed exclusively for liquid surge protection. These valves are extremely simple and 100% reliable. The dome cavity volume on top of the main valve piston is filled with nitrogen gas to affect the valve's proper set pressure. Dome gas pressure is set according to the characteristic piston seat-to-seal area ratio for the given valve size. This dome load forces the main valve into a closed position using a soft elastomer seat, providing a 100% tight shut-off. When surge pressure is sensed, the SurgeFlow valve piston opens immediately as the liquid fluid force acting under the piston overcomes the force from the dome gas working on the top. The piston continues to lift in proportion to the pressure surge, slightly compressing the dome gas. The closing cycle responds directly to pressure decay in the piping upstream of the SurgeFlow surge relief valve. 

SurgeFlow series valves are designed for accurate and repeatable performance. They will handle both minimum and maximum surge cases when called upon to relieve. Flow Safe suggests all surge relief valves be located nearest the point where maximum pressure can occur in the main pipeline for optimal safety purposes. 

For more information about Flow Safe products in New England, contact Piping Specialties. Call them at 800-223-1468, or visit their website at https://psi-team.com.

Thermal Flowmeters for Wastewater Applications

Kurz Flowmeter for Wastewater Applications

Wastewater treatment plants ( WWTPs) or publicly owned treatment plants (POTWs) must operate 24/7 to satisfy domestic, industrial, and storm drain sources. Sewage treatment includes eliminating pollutants from wastewater and sewage (human waste, animal waste, soaps, and detergents) to create a safe fluid waste stream that can be reintroduced safely into the ecosystem and a solid waste appropriate for reuse (usually as fertilizer). The primary applications for flow meters in wastewater treatment settings measure blower air to each pool in the aeration basin and measure digester gas flow.

Kurz Flowmeter on Digester
The aeration basin is an array of treatment pools containing aerobic bacteria that break down the pools' sewage. A blower adds the necessary dissolved oxygen (DO) to the aerobic bacteria in the aeration basin. Too little oxygen destroys the bacteria, and too much oxygen is expensive; running the aeration blower accounts for up to 60% of all wastewater power consumed.

Digester sewage is called "sludge." When bacteria is added to the digester, the sludge breaks down and releases gas. This digester gas is collected, compressed, it's excess moisture gets removed, and is then cleaned in a scrubber. The cleaned gas is sent to engines or fuel cells for power generation, boiler water heating (for steam or hot water), and excess gas burns off at the flare. Many extensive sewage treatment facilities use digester biogas to operate the plant, minimizing their grid power consumption.

Developing accurate flow rate data allows wastewater treatment facilities to more precisely manage digester production levels, enabling tighter controls on methane levels and flaring. Kurz Instruments provides a handy overview of where thermal flowmeters are applied and provide optimal performance. 

DOWNLOAD THE TECHNICAL PAPER HERE

For more information about applying flowmeters to wastewater applications in New England contact Piping Specialties. Call them at 800-223-1468 or visit their site at http://psi-team.com.