Showing posts with label actuators. Show all posts
Showing posts with label actuators. Show all posts

Delivering Process Control Excellence in New England: The Piping Specialties/PSI Controls Advantage

Delivering Excellence in Process Control in New England: The Piping Specialties, Inc. Advantage

Piping Specialties, Inc. / PSI Controls is a highly regarded process equipment Rep and Distributor with offices in Portland, Maine, and Danvers, Massachusetts. The products they specify, apply, and sell, including process control instrumentation, industrial valves, actuators, and engineered piping products, are vital for the process control industries of New England. 


About Piping Specialties/PSI Controls Territory


New England comprises six states: Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, Upstate New York, and Maine. The primary process industries in these states include:


  1. Manufacturing: Manufacturing is a significant sector in New England, including the manufacturing of machinery, electronic products, biomedical and pharmaceutical products, plastics, and rubber products.
  2. Food Processing: New England is known for its dairy, seafood, and specialty foods. Dairy processing is significant in Vermont, while seafood processing is prevalent in coastal states like Massachusetts and Maine. There is also a strong presence of craft breweries, wineries, and distilleries.
  3. Biotechnology and Pharmaceuticals: The biotechnology and pharmaceutical industries are prominent in this region, particularly in Massachusetts, home to many biotech and pharmaceutical companies.
  4. Microelectronics and Computer Hardware: States like Massachusetts and Connecticut have a strong microelectronics and computer hardware sector, including the manufacturing of semiconductors.
  5. Chemicals: The chemical industry, including specialty chemicals, industrial gases, and coatings, is also prevalent in this region.
  6. Energy: While not a traditional "process" industry, the energy sector, including renewable energy technologies, nuclear energy, and conventional power generation, is also significant in New England.


PSI's mission is to ensure the smooth operation of these vital sectors by offering the highest quality products backed by their expert services. 


Outstanding Pre and Post Sales Engineering Support


PSI Sales Engineers bring tremendous value to their customer in New England in several crucial ways:


  1. Technical Expertise: PSI sales professionals know about instrumentation, valves, and other process control equipment. They can help customers understand the benefits and functionalities of different products, enabling them to make informed purchasing decisions that best meet their requirements.
  2. Customer Needs Analysis: PSI Sales Engineers are skilled at understanding and interpreting customer needs. They can suggest suitable products or tailor-made solutions that will meet a customer's specific needs, ensuring optimal performance and return on investment.
  3. Customer Education: PSI sales people are pivotal in training customers on adequately using and maintaining equipment, enhancing customer satisfaction and loyalty. This education ensures that the instruments and valves operate at peak efficiency and can prolong their life cycle and minimize downtime.
  4. Troubleshooting and Support: PSI Sales Engineers often provide technical support, helping to solve any problems customers may encounter with the equipment. Their ability to troubleshoot issues quickly can significantly impact customer satisfaction and retention.


Call Piping Specialties/PSI Controls with Your Next Instrumentation, Valve, or Engineered Piping Requirement


PSI takes pride in their deep industry knowledge, technical expertise, and customer-centric approach, enabling them to tailor their offerings to match our customers' needs. PSI strives to continuously provide reliable, efficient, and safe solutions, reinforcing their commitment to their customers and the broader industry.


For more information, contact:
Piping Specialties, Inc.
https://psi-team.com
800-223-1468




Control Valves, Actuators, and Positioners

Control Valves, Actuators, and Positioners

Valves regulate fluid flow to provide accurate control and safety in any given process system, and methods of adjusting valve position are always required.


Commonly, valves are operated with handwheels or levers, although some must be regularly opened, closed, or throttled. In certain conditions, it is not always practical to position valves manually; hence actuators are employed instead of hand wheels or levers. 


An actuator is a mechanism that moves or regulates a device, such as a valve. Actuators decrease the requirement for people to operate each valve manually. Valves using actuators can remotely control valve position, particularly crucial in applications where valves open and close or modulate fast and precisely. 


Pneumatic, hydraulic, and electrical actuators are the three fundamental types. 


  1. Pneumatic actuators employ air pressure to generate motion and are probably the most prevalent type of actuator utilized in process systems. 
  2. Actuators powered by a pressurized liquid, such as hydraulic fluid, are called hydraulic actuators. Typically, hydraulic actuators of the same size produce more torque than pneumatic actuators. 
  3. Electric actuators generate motion using electricity. Actuators usually belong to two broad categories: solenoid or motor-driven actuators. 


Actuators position valves in response to controller signals and can be positioned rapidly and precisely to accommodate frequent flow variations. The instrumentation systems that monitor and respond to fluctuations in plant processes include controllers. Controllers receive input from other instrumentation system components, compare that input to a setpoint, and provide a corrective signal to bring the process variable (such as temperature, pressure, level, or flow). 


You have a control valve when actuators pair with flow-limiting or flow-regulating valves. Generally speaking, control valves automatically restrict flow to provide accurate flow to a process to maintain product quality and safety. 


Control valves can be linear, where the stem moves the valve disk up and down like globe valves, or rotational. Rotary control valves include butterfly valves, which open or close with a 90-degree rotation. The pneumatic diaphragm and electric actuators are the most prevalent on linear and rotational control valves.


Some valves require long stem travel or substantial force to change position. A piston actuator's higher torque is preferable to diaphragm actuators in these situations. Examples of piston actuators are rack and pinion and scotch-yoke designs. 


Single-acting piston actuators control the air pressure on one side of a piston, and with higher air pressure, the piston moves within the cylinder and turns the valve. The air on the opposite side of the piston exits the cylinder via an air vent. With decreased air pressure, the spring expands, causing the piston to move in the opposite direction. 


If air pressure falls below a predetermined threshold or is lost, the spring will push the piston to the desired position, referred to as the "fail" position (open or closed). 


A double-acting piston actuator lacks a spring and has air supply ports on both ends of the cylinder. Increasing air pressure to the supply port moves the valve in one direction. Higher pressure air entering from the opposite supply port pushes the valve in the opposite direction. Filling the cylinder with air and releasing air from the cylinder is regulated by a device known as a positioner. 


Typically, the control of pneumatic actuators occurs from air signals from a controller. Some actuators react directly from a controller, for instance, a 3-15 PSI controller pneumatic output. Sometimes, a controller signal alone cannot counteract friction or fluid pressure. This situation requires a separate, higher-pressure air supply and modulating it with a pneumatic or electro-pneumatic positioner. These devices regulate a higher-pressure air supply to ensure that an actuator has enough torque to position a valve accurately. The positioner responds to a change in the controller's air, voltage, or current signal and proportions the higher pressure air to the actuator. Connecting the actuator stem to the positioner is a mechanical linkage. This mechanical connection is also known as a feedback connection. As the actuator stem moves up or down, or rotationally, the link likewise moves. The location of the connection informs the positioner when sufficient movement coincides with the controller's air signal. The controller's signal transmits to the positioner instead directly to the actuator, and the positioner regulates the air supply provided to the actuator.


Like other process components, actuators are prone to mechanical issues. Since actuator issues can negatively impact the operation of a process, it is essential to be able to recognize actuator issues when they occur. Frequently, an operator can notice an actuator fault by comparing the valve position indication to the position specified by the controller. For instance, if the position indicator shows the valve closed, but the flow indicator on the controller indicates that flow is still passing through the valve, the valve seat and disc are likely worn, enabling leakage through the valve.


Because there are so many different styles and designs of actuators, positioners, and valves and so many industrial applications, the combination possibility matrix is vast. You must discuss your application with a knowledgeable, experienced valve expert. The success of your project in terms of product quality, system cost, maintenance, and safety depends upon it.


Piping Specialties / PSI Controls
800-223-1468

Protective Coating Options for the Series 3R Rack and Pinion Actuators


The standard coating option for the Series 3R rack and pinion actuator is a hard anodized coating. The body is coated inside and out with epoxy-coated end caps. The carbon steel pinions are zinc plated, and all the fasteners are stainless steel. This standard coating is suitable for most general and industrial applications.

Electroless nickel plating is another actuator coating option. This coating applies externally and internally. Electroless nickel coating provides excellent corrosion resistance for acid mines or caustic wash downs with sodium or potassium hydroxide.

Another coating option is PTFE infusion, which is also applied internally. This coating is excellent in seawater applications as it can withstand an ASTM B117 salt fog spray test. PTFE infusion is also ideal for caustic washdowns with sodium or potassium hydroxide.

A marine epoxy coating option for the actuator body may also be added to other items, such as valves and gearboxes. This coating is an excellent preventer of corrosion in marine service environments and is available in custom paint colors to meet your specifications.

Another option is not a coating, but instead, the series S2 all stainless steel rack and pinion actuator. This actuator has an electro-polished finish and is an excellent economical solution to harsh chemical environments. It is ideal for the chemical-resistant requirements of the pharmaceutical, food and beverage, pulp and paper, and petrochemical industries. Series S2 actuators can be coupled directly to stainless steel valves and accessories to create a complete stainless steel automated package.

For more information about the best coating application for your rack and pinion actuator, contact Piping Specialties.

Piping Specialties / PSI Controls
800-223-1468

The Important Role of Valve Actuators

Valve actuation
Actuator being positioned on large ball valve.
(Piping Specialties)
Valves are essential to modern industry. The prevalence of valves in engineering, process control, and manufacturing across the world is astounding, and each valve application requires it's own performance standard. Product safety, quality, and consistency is dependent on the proper selection of valves, whether ball, butterfly, gate or globe. Along with proper selection of the valve type, selecting the proper valve operator is critical for controlling the process, assuring quality, and protecting equipment and personnel.

Actuators are powered mechanisms that position valves between open and closed states; the actuators are controllable either by manual operators, or as part of an automated system where the actuator responds to a remote control signal. The valve actuator is as important to the valve, as the valve is to the industry in which it functions.

Thanks to actuators, multiple valves can be controlled in a process system in a coordinated fashion; imagine if, in a large industrial environment, engineers had to physically adjust every valve via a hand wheel or lever! It is completely impractical from a logistical and economic perspective. Actuators enable automation to be applied to valve operation throughout the facility.

Valve actuators serve as the interface between the control intelligence and the physical movement of the valve. The most obvious advantage of valve automation is risk mitigation, where, as long as the system is functioning correctly, critical calamities in either environmental conditions or to a facility can be pre-empted and quickly prevented.

Rack and pinion actuators
Rack and pinion actuators.
(Flo-Tite)
Regardless of its power source, be it electricity, hydraulic fluid, air pressure, or other, all valve actuators share a singular purpose; to produce linear or rotary motion under the command of a control source. Depending on the design and settings of the actuator, valves can be closed, fully open, or somewhere in-between. Modern actuation technology allows for remote indication and control of valve position, as well as other diagnostic and operational information.

Pneumatic actuators utilize air pressure as the motive force which changes the position of a valve. Hydraulic actuators depend on non-compressible liquids under pressure to provide the motive force. Electric actuators, either motor driven or solenoid operated, rely on electric power to change valve position.

As automation continues to advance throughout every industry, manual valve operation makes less and less sense. Component integration, lower cost and universally accepted valve communications systems are becoming the norm. Simple, seldomly operated, basic valves are now outfitted with inexpensive automation packages that allow them to be monitored as part of the entire process control system.

Automated valves
Automated valves ready for shipment.
Thanks to their versatility, reliability, and technological advances, valve actuators provide safe and repeatable operation in critical processes all over the world.  Just as industries are the backbones of societies, valves are key building blocks to industrial processes, with actuators ensuring both safe and precise operation.

For information on valve automation, contact Piping Specialties by calling 800-223-1468 or by visting https://psi-team.com.