Advanced Water Level Monitoring in Sewage Pools

Advanced Water Level Monitoring in Sewage Pools

The complex sewage system of a power plant necessitates immediate maintenance and management. The water utilized for operating turbines and other waste materials runs through the sewage system, and ultimately to the municipal wastewater treatment facility.

Some treatment pools are located in isolated areas around the plant, making it challenging for maintenance staff to access and repair damage promptly. Plant maintenance personnel continually look for ways to more effectively manage the pools and avoid situations where wastewater could overflow.

With the sewage system linked to a central control room, data from each sewage pool has to be transmitted to the primary Distributed Control System (DCS). To achieve optimal management of the sewers, continuous monitoring and attendants are usually necessary.

Technicians understand that sewer blockages inevitably lead to wastewater flooding due to the time required for the equipment to address the backup. This flooding results in significant damage to the surrounding area. Hence, it is crucial to regulate the wastewater level in the pools to prevent such incidents from occurring.

An outstanding solution for this problem is to install two Drexelbrook USonic continuous level transmitters to monitor level in the sewage pools. The USonic's capability to deliver contactless, continuous, and precise water level readings in the pools provide engineers with a comprehensive understanding of the pools' condition. The device's compact size and integral design facilitate easy installation, enabling a quick and efficient solution. With a measuring range of up to 30 feet, the USonic effortlessly provides water level readings of the 12-foot-high sewage pools. Its scan distance function can identify obstacles in the pool and record interfering signals. The USonic connects to the central control system via a 4-20mA interface, granting the engineers constant oversight of the water levels in the sewers, ensuring that the sewers would maintain the appropriate water level and the system would receive a notification in the event of an emergency.

For more information about the use of Drexelbrook USonic level transmitters in New England, contact:

Piping Specialties / PSI Controls
800-223-1468

Elastomer-Lined vs High-Performance Butterfly Valves: Which One Suits Your Needs?

Elastomer-Lined vs High-Performance Butterfly Valves: Which One Suits Your Needs?

Butterfly valves, a type of quarter-turn valve, see widespread use in controlling the flow of various fluids in industrial settings. Their simple structure features a disc in the center of the pipe with a rod passing through it, connecting to an external actuator. When the actuator rotates, it turns the disc parallel or perpendicular to the flow. Butterfly valves simplicity, compactness, and relatively low cost contribute to their popularity.

Butterfly valves fall into two main categories: elastomer-lined (or rubber-lined) and high-performance butterfly valves (HPBVs).

Elastomer-Lined Butterfly Valves: This type represents the most common butterfly valves, frequently used in low-pressure and temperature applications. Their design incorporates an offset disc, meaning it doesn't sit centrally within the valve body. This disc rotates 90 degrees from the open to the closed position, and the valve typically includes an elastomer (rubber) liner that forms a seal when the valve is closed. Several advantages come with the rubber liner. It provides a tight seal and shields the body from the medium under control. 

These valves prove suitable for handling mildly corrosive fluids or those with minor solid content. However, the rubber liner may degrade over time or with exposure to harsh substances or temperatures, limiting its applicability under certain conditions. 

Common applications include: 
  • Water Treatment Plants: In water treatment plants, operators often use these valves to throttle service, control flow rate, or as on-off valves.
  • Chemical Industry: These valves frequently appear in the chemical industry, where they handle mildly corrosive substances or fluids with small amounts of solid content. They control the flow of various chemical products in pipelines.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems employ these valves to regulate the flow of chilled or heated water.
  • Food & Beverage Industry: The food and beverage industry uses these valves to maintain sanitary conditions, thanks to their ability to handle gentle cleaning and sterilization procedures.

High-Performance Butterfly Valves (HPBV): The design of HPBVs is more sophisticated than standard elastomer-lined butterfly valves. These find use in higher pressure and temperature applications, where a regular rubber-lined valve wouldn't suffice. Typically, they follow a double-eccentric or triple-eccentric design, where the stem sits away from the centerline of the disc, and the disc's centerline also deviates from the bore's centerline. This arrangement reduces wear and enhances sealing capabilities. In terms of sealing, these valves use a metal seat and a seal typically made from a softer, high-temperature-tolerant material instead of an elastomer liner. This design provides a tighter seal and allows them to handle higher pressures and temperatures compared to elastomer-lined butterfly valves. They last longer due to their metal seat design. Despite their advantages, HPBVs come with some drawbacks. Their complex structure and the materials used make them generally more expensive. They also come larger and heavier, necessitating more space and support. 

Common applications include:
  • Oil & Gas Industry: The oil and gas industry widely uses high-performance butterfly valves due to their ability to withstand higher pressures and temperatures. They control the flow of oil or gas in pipelines and processing equipment.
  • Power Generation: Power plants use them, especially in steam and feed water lines, where high temperatures and pressures are typical.
  • Chemical Plants: Chemical plants also use these valves to handle aggressive chemicals at higher temperatures and pressures.
In summary, the choice between elastomer-lined and high-performance butterfly valves hinges on application specifics, including the pressure and temperature conditions, the type of fluid under control, and the desired lifespan and reliability of the valve.

To discuss your butterfly valve applications in New England, contact Piping Specialties, Inc. Call 800-223-1468 or visit https://psi-team.com.

Plugged Chute Detection Technology: The Superiority of RF Admittance

The Best Plugged Chute Detection Technology: The Superiority of RF Admittance

The operation of industrial processes is a delicate balance of efficiency, safety, and maintenance. A crucial part of maintaining this balance is ensuring the smooth operation of material handling systems, which often employ chutes to transport bulk materials. One common complication these systems face is the problem of chute blockages or plugging, a critical issue that can lead to costly downtime, equipment damage, and potential safety hazards.


Plugged chute detection technologies mitigate these challenges, offering early detection and warning of chute blockages. However, the effectiveness of these technologies varies, and understanding their characteristics is essential for making an informed decision.


Overview of Plugged Chute Detection Technologies

Plugged chute detection technologies fall into three broadly classified groups, mechanical, acoustic, and electromagnetic methods.


Mechanical systems, such as tilt switches and paddle wheel indicators, are simple and inexpensive but prone to mechanical failure and false alarms due to vibration or material buildup. They also require regular maintenance to function effectively.


Acoustic detectors, on the other hand, utilize microphones to listen for changes in the acoustic signature of material flow. While this can be an effective method, it is sensitive to environmental noise and requires sophisticated signal processing to distinguish between normal and blocked flow.


Electromagnetic methods include capacitive probes, microwave radar, and RF Admittance. These offer non-contact detection and are less prone to false alarms and mechanical failures—however, the material's properties, environmental conditions, and installation setup affect their performance and application.


RF Admittance: The Optimal Choice

After an extensive review of these technologies, RF Admittance emerges as the overall best selection for plugged chute detection for several reasons:


Reliability

RF Admittance technology uses a probe to measure changes in the dielectric constant (a property of materials that affects their response to an electric field) between the sensor and the chute wall. When the chute is clear, the admittance (the measure of how easily a circuit or device allows an electric current to pass) between the probe and chute wall will be at one level, and when the chute is blocked, the admittance will change significantly. This reliable detection method leads to fewer false alarms than mechanical and acoustic systems.


Resistance to Material Buildup

One of the significant advantages of RF Admittance technology is its resistance to material buildup on the probe. The technology uses a driven shield construction that ensures only the material near the active sensor affects the reading. This feature helps to eliminate the risk of false alarms due to material buildup, a common issue in other technologies.


Versatility

RF Admittance technology works with various materials, regardless of their conductive or non-conductive properties, making it a versatile solution in different industries handling multiple types of bulk materials.


The Drexelbrook Solution


The Drexelbrook Plugged Chute Detector consistently identifies whether material is flowing through chutes. If the material ceases to flow due to a blockage, an alarm from the flush-mounted capacitance sensing element will be triggered, prompting further necessary actions such as notifying an operator or shutting down a conveyor belt.


The Drexelbrook detector, also known as a blocked chute switch, reliably tracks the presence or absence of bulk solids material in chutes without compromising flow speed. This cost-effective device ensures the continuous flow of materials.


Its robust sensor design makes this point-level switch optimal for handling materials such as coal, wood chips, ores, and powders. Since it is flush mounted through a chute wall, there is no protrusion into the chute to hinder or obstruct material flow.


The point-level switch can automatically identify and disregard coatings, thus preventing false alarms. It features a universal power supply that auto-detects and adjusts to the input power source.


Unlike similar technologies, the point-level switch for detecting plugged chutes permits remote electronics installation at a convenient or safer location.


The dependable detection of plugged chutes ensures smooth plant operations and significantly reduces the chance of spills due to blockages.


Key Features:

  • Availability of both curved and flat sensors
  • DPDT relay dry contacts rated at 5A, 120VAC
  • Requires less maintenance compared to other technologies; devoid of any moving parts that could potentially hang up or wear out
  • Utilizes Drexelbrook PML series electronics
  • Auto-detecting supply voltage range: 19-250 VAC, 18-200 VDC, without the need for jumpers

For more information, contact:
Piping Specialties, Inc.
https://psi-team.com
800-223-1468

Delivering Process Control Excellence in New England: The Piping Specialties/PSI Controls Advantage

Delivering Excellence in Process Control in New England: The Piping Specialties, Inc. Advantage

Piping Specialties, Inc. / PSI Controls is a highly regarded process equipment Rep and Distributor with offices in Portland, Maine, and Danvers, Massachusetts. The products they specify, apply, and sell, including process control instrumentation, industrial valves, actuators, and engineered piping products, are vital for the process control industries of New England. 


About Piping Specialties/PSI Controls Territory


New England comprises six states: Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, Upstate New York, and Maine. The primary process industries in these states include:


  1. Manufacturing: Manufacturing is a significant sector in New England, including the manufacturing of machinery, electronic products, biomedical and pharmaceutical products, plastics, and rubber products.
  2. Food Processing: New England is known for its dairy, seafood, and specialty foods. Dairy processing is significant in Vermont, while seafood processing is prevalent in coastal states like Massachusetts and Maine. There is also a strong presence of craft breweries, wineries, and distilleries.
  3. Biotechnology and Pharmaceuticals: The biotechnology and pharmaceutical industries are prominent in this region, particularly in Massachusetts, home to many biotech and pharmaceutical companies.
  4. Microelectronics and Computer Hardware: States like Massachusetts and Connecticut have a strong microelectronics and computer hardware sector, including the manufacturing of semiconductors.
  5. Chemicals: The chemical industry, including specialty chemicals, industrial gases, and coatings, is also prevalent in this region.
  6. Energy: While not a traditional "process" industry, the energy sector, including renewable energy technologies, nuclear energy, and conventional power generation, is also significant in New England.


PSI's mission is to ensure the smooth operation of these vital sectors by offering the highest quality products backed by their expert services. 


Outstanding Pre and Post Sales Engineering Support


PSI Sales Engineers bring tremendous value to their customer in New England in several crucial ways:


  1. Technical Expertise: PSI sales professionals know about instrumentation, valves, and other process control equipment. They can help customers understand the benefits and functionalities of different products, enabling them to make informed purchasing decisions that best meet their requirements.
  2. Customer Needs Analysis: PSI Sales Engineers are skilled at understanding and interpreting customer needs. They can suggest suitable products or tailor-made solutions that will meet a customer's specific needs, ensuring optimal performance and return on investment.
  3. Customer Education: PSI sales people are pivotal in training customers on adequately using and maintaining equipment, enhancing customer satisfaction and loyalty. This education ensures that the instruments and valves operate at peak efficiency and can prolong their life cycle and minimize downtime.
  4. Troubleshooting and Support: PSI Sales Engineers often provide technical support, helping to solve any problems customers may encounter with the equipment. Their ability to troubleshoot issues quickly can significantly impact customer satisfaction and retention.


Call Piping Specialties/PSI Controls with Your Next Instrumentation, Valve, or Engineered Piping Requirement


PSI takes pride in their deep industry knowledge, technical expertise, and customer-centric approach, enabling them to tailor their offerings to match our customers' needs. PSI strives to continuously provide reliable, efficient, and safe solutions, reinforcing their commitment to their customers and the broader industry.


For more information, contact:
Piping Specialties, Inc.
https://psi-team.com
800-223-1468




The Emerson TESCOM™ Anderson Greenwood H2 Series for Hydrogen Applications and Fuel Stations

The Emerson TESCOM™ Anderson Greenwood H2 Series for Hydrogen Applications and Fuel Stations

Hydrogen Fuel Stations are specialized refueling infrastructure that provides hydrogen gas for fuel cell vehicles (FCVs). These stations store and dispense hydrogen in a compressed or liquefied form, which is then used by FCVs to generate electricity through a chemical reaction with oxygen in a fuel cell stack, thus powering the vehicle.

There has been increasing interest and investment in hydrogen fuel stations and fuel cell technology across the country, driven by the goals of reducing emissions, increasing energy security, and diversifying the energy mix. Federal and state governments, private companies, and research institutions have collaborated to support developing and deploying hydrogen fuel stations and related technologies.

To boost the growth of hydrogen fuel stations, the US Department of Energy (DOE) initiated the H2@Scale initiative to advance hydrogen production, storage, distribution, and utilization technologies. This program seeks to lower hydrogen costs, increase its output from various sources (including renewables), and facilitate its adoption in multiple sectors, such as transportation, industry, and power generation.

Emerson's TESCOM™ Anderson Greenwood Instrumentation Valves H2 Series are high-pressure gas applications valves for hydrogen fueling stations and function as isolation valves. 

The H2 Valve Series employs stem seal technology, enabling consistent pressure containment and low operating torque, making it well-suited for hydrogen fuel dispensing systems. By offering a reliable, low-maintenance solution, the H2 Valve Series allows manufacturers and integrators of hydrogen fueling stations to reduce operational service expenses and potential leakage. 

The H2 Series complies with the ISO 19880.3 standard for 700 bar H70 Station Rating in hydrogen fuel station applications. Its compact, lightweight, and ergonomic design enhances installation and operational processes.


For more information, contact:
Piping Specialties, Inc.
800-223-1468

Level Measurement in the Food Processing Industry

Level Measurement in the Food Processing Industry

Level sensors and controls are crucial in industrial food processing and production facilities to ensure quality and consistency. These devices monitor and regulate the level of liquids, solids, or granular materials in containers, vessels, or silos. Here are some of the most common types of level sensors and controls used in the industry:


  1. Capacitive level sensors: These sensors detect changes in capacitance caused by the presence or absence of material (liquid or solid) in a container. They measure liquids, powders, or granular materials levels in various applications, including food and beverages.
  2. Ultrasonic level sensors: Ultrasonic sensors use sound waves to measure the distance between the sensor and the material's surface. These sensors are non-contact and used for measuring levels of liquids or solids in tanks or silos and provide the food industry with accuracy and reliability.
  3. Radar level sensors: Similar to ultrasonic sensors, radar level sensors use radio waves to measure the distance between the sensor and the material's surface. They are also non-contact and suitable for liquid and solid materials. Radar sensors are particularly useful in challenging environments with dust, vapor, or foam, making them ideal for food processing applications.
  4. Hydrostatic pressure level sensors: These sensors measure the pressure exerted by the liquid column on the sensor at a specific depth. The pressure re-calibrates to a level measurement. They are primarily used for measuring liquid levels in tanks and have broad use in the food and beverage industry.
  5. Float level sensors: Float sensors use a floating device to detect the liquid level in a container. The float's vertical or tilting movement triggers a mechanical or electrical signal indicating the liquid level. Food processing plants often use them for simple and cost-effective level measurements.
  6. Vibrating or tuning fork level sensors: These sensors use a vibrating probe or tuning fork that changes its vibration frequency when it comes into contact with a material. They can detect the presence or absence of material and provide point-level detection of liquids, powders, or granular materials.
  7. Optical level sensors: Optical sensors use infrared or visible light to detect the presence or absence of a material at a specific level. They are suitable for various materials, including liquids, powders, and solids, in food processing applications where minimum contact with the material is essential.


The choice of level sensor and control system depends on factors like the process material, the required accuracy, the process conditions, and the specific application within the food processing facility. Each technology has advantages and limitations, so careful consideration is needed to select the most suitable option for each application.


For more information, contact:
Piping Specialties, Inc.

800-223-1468

Process Refractometers - The Vaisala Polaris™ Product Family

The Vaisala Polaris Process Refractometers

Industrial refractometers are essential in process automation as they help ensure product quality and consistency, reduce waste, and increase productivity. Refractometers measure a substance's refractive index, which measures how much light is bent as it passes through a sample. This measurement can provide valuable information about the composition and concentration of a solution, which is critical in many industrial processes.

In the food and beverage industry, refractometers measure the sugar content of juices, jams, and other products. This measurement helps ensure that the products are consistent in taste and texture and meet regulatory requirements. In the pharmaceutical industry, refractometers measure the concentration of active ingredients in medications, which is critical for ensuring the effectiveness and safety of the product. In pulp and paper production, process refractometers measure the concentration of dissolved solids in different stages of the production process, such as in the pulping process, bleaching process, or paper coating process. Process refractometers are used in semiconductor manufacturing to measure the concentration of chemical solutions used in various functions, such as cleaning, etching, and chemical mechanical planarization. Finally, process refractometers are commonly used in chemical production to measure the concentration of dissolved solids, such as salts, acids, and other chemicals, in various stages of the production process. 

By automating the process of measuring refractive index, industrial refractometers can provide accurate and reliable measurements in real-time without the need for manual testing, helping to reduce errors and improve process efficiency, as well as reduce labor costs associated with manual testing. In addition, automated refractometers can be integrated into larger process control systems, allowing for continuous monitoring and control of critical process parameters.

Vaisala specializes in developing and manufacturing environmental and industrial measurement equipment and systems. Their new Vaisala Polaris™ Product Family optimizes manufacturing processes, enhances productivity, and saves resources, energy, and time in various industries and hundreds of applications.

Vaisala Polaris™ utilizes an optical measurement principle that eliminates the need for regular maintenance when combined with zero moving parts, making their product an efficient and reliable solution for businesses needing continuous, uninterrupted measurement readings. Additionally, Polaris™ works seamlessly out of the box with Vaisala's Indigo520 transmitters, allowing for an easy setup process. To further ensure accuracy, Vaisala has developed a library of over 500 concentration models that allow for precise measurements of various dissolved solids, catering to the unique needs of their clients.

Vaisala Polaris™ boasts unparalleled accuracy, with no chance of drift due to the absence of particles, bubbles, or color influencing the readings. Additionally, Polaris™ product has long-term stability, and the measurement principle involves no moving parts, ensuring years, and even decades, of precise and stable measurement. As an added benefit, Vaisala provides an Engineer to Order service for more significant opportunities, allowing for the customization of their product to fit the specific needs of their clients.

Overall, industrial refractometers play a critical role in process automation, helping to ensure product quality and consistency, improve efficiency and productivity, and reduce waste and costs. As automation technology advances, refractometers and other process monitoring instruments will likely become even more important in industrial settings. Vaisala Polaris™ is an advanced technology that provides superior performance and is ideal for your application. For more information about Vaisala Polaris™ in New England, contact Piping Specialties / PSI Controls. Call them at 800-223-1468 or visit https://psi-team.com.