The Emerson TESCOM™ Anderson Greenwood H2 Series for Hydrogen Applications and Fuel Stations

The Emerson TESCOM™ Anderson Greenwood H2 Series for Hydrogen Applications and Fuel Stations

Hydrogen Fuel Stations are specialized refueling infrastructure that provides hydrogen gas for fuel cell vehicles (FCVs). These stations store and dispense hydrogen in a compressed or liquefied form, which is then used by FCVs to generate electricity through a chemical reaction with oxygen in a fuel cell stack, thus powering the vehicle.

There has been increasing interest and investment in hydrogen fuel stations and fuel cell technology across the country, driven by the goals of reducing emissions, increasing energy security, and diversifying the energy mix. Federal and state governments, private companies, and research institutions have collaborated to support developing and deploying hydrogen fuel stations and related technologies.

To boost the growth of hydrogen fuel stations, the US Department of Energy (DOE) initiated the H2@Scale initiative to advance hydrogen production, storage, distribution, and utilization technologies. This program seeks to lower hydrogen costs, increase its output from various sources (including renewables), and facilitate its adoption in multiple sectors, such as transportation, industry, and power generation.

Emerson's TESCOM™ Anderson Greenwood Instrumentation Valves H2 Series are high-pressure gas applications valves for hydrogen fueling stations and function as isolation valves. 

The H2 Valve Series employs stem seal technology, enabling consistent pressure containment and low operating torque, making it well-suited for hydrogen fuel dispensing systems. By offering a reliable, low-maintenance solution, the H2 Valve Series allows manufacturers and integrators of hydrogen fueling stations to reduce operational service expenses and potential leakage. 

The H2 Series complies with the ISO 19880.3 standard for 700 bar H70 Station Rating in hydrogen fuel station applications. Its compact, lightweight, and ergonomic design enhances installation and operational processes.


For more information, contact:
Piping Specialties, Inc.
800-223-1468

Level Measurement in the Food Processing Industry

Level Measurement in the Food Processing Industry

Level sensors and controls are crucial in industrial food processing and production facilities to ensure quality and consistency. These devices monitor and regulate the level of liquids, solids, or granular materials in containers, vessels, or silos. Here are some of the most common types of level sensors and controls used in the industry:


  1. Capacitive level sensors: These sensors detect changes in capacitance caused by the presence or absence of material (liquid or solid) in a container. They measure liquids, powders, or granular materials levels in various applications, including food and beverages.
  2. Ultrasonic level sensors: Ultrasonic sensors use sound waves to measure the distance between the sensor and the material's surface. These sensors are non-contact and used for measuring levels of liquids or solids in tanks or silos and provide the food industry with accuracy and reliability.
  3. Radar level sensors: Similar to ultrasonic sensors, radar level sensors use radio waves to measure the distance between the sensor and the material's surface. They are also non-contact and suitable for liquid and solid materials. Radar sensors are particularly useful in challenging environments with dust, vapor, or foam, making them ideal for food processing applications.
  4. Hydrostatic pressure level sensors: These sensors measure the pressure exerted by the liquid column on the sensor at a specific depth. The pressure re-calibrates to a level measurement. They are primarily used for measuring liquid levels in tanks and have broad use in the food and beverage industry.
  5. Float level sensors: Float sensors use a floating device to detect the liquid level in a container. The float's vertical or tilting movement triggers a mechanical or electrical signal indicating the liquid level. Food processing plants often use them for simple and cost-effective level measurements.
  6. Vibrating or tuning fork level sensors: These sensors use a vibrating probe or tuning fork that changes its vibration frequency when it comes into contact with a material. They can detect the presence or absence of material and provide point-level detection of liquids, powders, or granular materials.
  7. Optical level sensors: Optical sensors use infrared or visible light to detect the presence or absence of a material at a specific level. They are suitable for various materials, including liquids, powders, and solids, in food processing applications where minimum contact with the material is essential.


The choice of level sensor and control system depends on factors like the process material, the required accuracy, the process conditions, and the specific application within the food processing facility. Each technology has advantages and limitations, so careful consideration is needed to select the most suitable option for each application.


For more information, contact:
Piping Specialties, Inc.

800-223-1468

Process Refractometers - The Vaisala Polaris™ Product Family

The Vaisala Polaris Process Refractometers

Industrial refractometers are essential in process automation as they help ensure product quality and consistency, reduce waste, and increase productivity. Refractometers measure a substance's refractive index, which measures how much light is bent as it passes through a sample. This measurement can provide valuable information about the composition and concentration of a solution, which is critical in many industrial processes.

In the food and beverage industry, refractometers measure the sugar content of juices, jams, and other products. This measurement helps ensure that the products are consistent in taste and texture and meet regulatory requirements. In the pharmaceutical industry, refractometers measure the concentration of active ingredients in medications, which is critical for ensuring the effectiveness and safety of the product. In pulp and paper production, process refractometers measure the concentration of dissolved solids in different stages of the production process, such as in the pulping process, bleaching process, or paper coating process. Process refractometers are used in semiconductor manufacturing to measure the concentration of chemical solutions used in various functions, such as cleaning, etching, and chemical mechanical planarization. Finally, process refractometers are commonly used in chemical production to measure the concentration of dissolved solids, such as salts, acids, and other chemicals, in various stages of the production process. 

By automating the process of measuring refractive index, industrial refractometers can provide accurate and reliable measurements in real-time without the need for manual testing, helping to reduce errors and improve process efficiency, as well as reduce labor costs associated with manual testing. In addition, automated refractometers can be integrated into larger process control systems, allowing for continuous monitoring and control of critical process parameters.

Vaisala specializes in developing and manufacturing environmental and industrial measurement equipment and systems. Their new Vaisala Polaris™ Product Family optimizes manufacturing processes, enhances productivity, and saves resources, energy, and time in various industries and hundreds of applications.

Vaisala Polaris™ utilizes an optical measurement principle that eliminates the need for regular maintenance when combined with zero moving parts, making their product an efficient and reliable solution for businesses needing continuous, uninterrupted measurement readings. Additionally, Polaris™ works seamlessly out of the box with Vaisala's Indigo520 transmitters, allowing for an easy setup process. To further ensure accuracy, Vaisala has developed a library of over 500 concentration models that allow for precise measurements of various dissolved solids, catering to the unique needs of their clients.

Vaisala Polaris™ boasts unparalleled accuracy, with no chance of drift due to the absence of particles, bubbles, or color influencing the readings. Additionally, Polaris™ product has long-term stability, and the measurement principle involves no moving parts, ensuring years, and even decades, of precise and stable measurement. As an added benefit, Vaisala provides an Engineer to Order service for more significant opportunities, allowing for the customization of their product to fit the specific needs of their clients.

Overall, industrial refractometers play a critical role in process automation, helping to ensure product quality and consistency, improve efficiency and productivity, and reduce waste and costs. As automation technology advances, refractometers and other process monitoring instruments will likely become even more important in industrial settings. Vaisala Polaris™ is an advanced technology that provides superior performance and is ideal for your application. For more information about Vaisala Polaris™ in New England, contact Piping Specialties / PSI Controls. Call them at 800-223-1468 or visit https://psi-team.com.

Trunnion Mount Valves

Trunnion Mount Valves

Trunnion mount valves are a type of industrial valve used to control the flow of fluids, such as liquids, gases, and slurries, in high-pressure systems. The term "trunnion mount" refers to how the valve mounts on a trunnion, a cylindrical projection that serves as a pivot point for the valve.

The valve body is typically made of metal, such as cast iron, steel, or stainless steel, and may be lined with materials such as PTFE or rubber to improve corrosion resistance and reduce wear. The valve stem, the part of the valve that rotates to open and close the valve, is also usually made of high-strength metal.

One of the most common uses of trunnion mount valves is in oil and gas production and transportation. These valves are often used in pipelines to control the flow of crude oil, natural gas, and other hydrocarbons. They are also commonly used in chemical plants, power plants, and other industrial facilities to control the flow of fluids in high-pressure systems.

Due to the need for tight shutoff and precise flow control, trunnion mount valves are typically used in high-pressure systems operating at 600 psi or higher pressures. They are also designed to handle high-pressure differential applications and are operated manually, pneumatically, or electrically.

Habonim designs and manufactures high-pressure ball valves and valve automation packages specially built for safety, endurance, and reliability to cover gases and fluids control up to 1,000 bar (15,000psi). 

The Habonim valve series is for harsh conditions in oil & gas and petrochemical industries, for underground and above-ground installation. Its robust design can withstand heavy loads from large sizes, high pressures, and dynamic temperature cycles. 

The trunnion valve series is certified to API 6D (Habonim monogram #6D-1278) with a valve wall thickness that is in full compliance with ANSI B16.34. The trunnion valve line withstands the maximum differential pressure rating specified by the American National Standards Institute (ANSI). The product range offers a range of end connectors, providing design flexibility and customized to meet each customer's specific needs and preferences.

For more information, contact:
Piping Specialties, Inc.
800-223-1468

The Role of Metal Expansion Joints

Metal Expansion Joints

Expansion joints, also known as bellows or compensators, are flexible connectors that are used in process and HVAC piping systems to absorb movements, such as thermal expansion and contraction, vibration, and misalignment. They are designed to prevent damage to the piping system, equipment, and surrounding structures by allowing for the movement and stress that occurs within the system.

There are several types of expansion joints, including metallic, non-metallic, and fabric. Metallic expansion joints are made of metal bellows and are typically used in high-pressure and high-temperature applications, as well as in applications that require a high degree of corrosion resistance. These expansion joints are typically made of stainless steel, but they can also be made of other metals such as Inconel, Monel, and Hastelloy.

The main function of metallic expansion joints is to provide flexibility in the piping system. They do this by allowing for movement in three main ways:
  • Lateral movement: Metallic expansion joints can accommodate lateral movement, which is movement in a side-to-side direction. This is important in systems that are subjected to thermal expansion and contraction, as the pipes will expand and contract due to temperature changes.
  • Angular movement: Metallic expansion joints can also accommodate angular movement, which is movement in a rotational direction. This is important in systems that are subjected to vibration, as the pipes will vibrate due to the flow of fluid or gas.
  • Axial movement: Metallic expansion joints can also accommodate axial movement, which is movement in a back-and-forth direction. This is important in systems that are subjected to misalignment, as the pipes may not be perfectly aligned.
  • In addition to providing flexibility, metallic expansion joints also help to reduce noise and vibration, and they can protect against the effects of corrosion, erosion, and abrasion. They are often used in a variety of industries, including power generation, petrochemical, pharmaceutical, and food and beverage.
If you'd like to discuss applying metal expansion joints in your application, contact:

Piping Specialties, Inc.
800-223-1468

Cryogenic Ball Valves

Cryogenic Ball Valves

Cryogenic ball valves are a type of valve that is designed to function at extremely low temperatures, typically below -150°C. They are used in a variety of applications where low temperature fluids need to be controlled, such as in the storage, transport, and processing of cryogenic gases, such as liquid nitrogen, oxygen, and argon.

Cryogenic ball valves are equipped with special materials and features that enable them to operate effectively at such low temperatures. For example, the body of the valve may be made from materials such as stainless steel or aluminum that have low temperature properties, and the valve may be equipped with a special insulation material to prevent heat transfer from the environment to the valve. The ball and seat of the valve may also be made from materials such as tungsten carbide or ceramic that can withstand extreme cold and wear.

Cryogenic ball valves are used in a variety of industries, including chemical, petrochemical, oil and gas, and food processing. They are commonly found in cryogenic storage tanks, pipelines, and processing equipment. They are also used in research and development facilities, medical facilities, and other industrial settings where low temperature fluids need to be controlled.

Cryogenic ball valves are used in a variety of applications that involve the handling of materials at extremely low temperatures. Some common applications for cryogenic ball valves include:
  • LNG (Liquefied Natural Gas) storage and transfer: Cryogenic ball valves are used to control the flow of LNG in storage tanks and transfer lines.
  • Cryogenic tanks and vessels: Cryogenic ball valves are used to control the flow of cryogenic fluids in tanks and vessels used for storage and transportation.
  • Refrigeration and air conditioning: Cryogenic ball valves are used in refrigeration and air conditioning systems to control the flow of refrigerants and other coolants.
  • Industrial gases: Cryogenic ball valves are used in the production, storage, and distribution of industrial gases such as oxygen, nitrogen, and argon.
  • Chemical and petrochemical processing: Cryogenic ball valves are used in the production and transportation of chemical and petrochemical products that require low temperatures for processing or storage.
  • Aerospace and defense: Cryogenic ball valves are used in aerospace and defense applications to control the flow of cryogenic fluids in satellites, rockets, and other space vehicles.
Piping Specialties will assist you in applying the right ball valve for your cryogenic application. Call them at 800-223-1468 or visit https://psi-team.com.