Valve Condition Monitoring

Valve Condition Monitoring

As corporations worldwide are increasingly concentrating on their bottom-line margins, there is an increased drive towards efficiency and productivity in industrial operations. Operators are also looking to respond to industry concerns about aging assets. All manufacturing activities are continually motivated to improve performance and productivity to boost profit margins and optimize bottom-line returns. This drive takes place in many industry sectors against a backdrop of increased health, safety, and environmental issues and the need to make changes to old assets that can sometimes run beyond their original design lifespan.

Reducing the number of unscheduled plant shutdowns is an essential way of fulfilling these targets. Unplanned shutdowns are mostly related to worn-out machinery and are attributable to exceeding process equipment's longevity in many instances. Operators may avoid expensive shutdowns and increase production uptime with a regular maintenance schedule and a condition monitoring solution that minimizes maintenance spending and improves plant safety. Asset tracking, asset management, and predictive maintenance solutions are, therefore, becoming increasingly common.

Valve condition monitoring's goal is to detect and prevent possible failures before causing unsafe conditions and unplanned downtimes.

Since valves are a critical component of any flow-based operation, valve efficiency is an essential factor to check when trying to avoid unplanned maintenance, or worse, shutdowns of plants and the resulting loss of batch output.

Although some operators already deploy condition monitoring on control valves and critical valves, many valves are often left unmonitored, particularly those used for on / off and shutdown applications. Although the technology for controlling these valves is available, operators are discouraged from such an investment because of the prohibitive hardware and installation cost. 

Although some valve manufacturers have touted various valve testing and monitoring systems, many proposed solutions can pose operational, financial, and/or technical implementation problems. This is because they are usually considerably more expensive than conventional methods or require new electrical systems and hardware to accommodate and enhance the monitoring software. Suppose automation is at the most basic level, such as that needed with on/off valves. In that case, the transformation is relatively low in value. The time and resources involved in implementing a useful monitoring solution can be challenging to justify. However, the consequence is that vast numbers of on/off valves are not supervised and pose a significant risk of valve failure.

By implementing this technology cost-effectively on all automatic valves, a plant will provide production efficiency and avoid unspecified delays and unsafe conditions. Valve Condition Monitoring is useful to all operating phases of the plant and thus provides the ability to increase all current and future installations' performance and safety. If you are considering updating your plant's valve monitoring strategy, contact a local expert who can guide you through all the ups and downs. The information they provide is truly invaluable. 

Piping Specialties / PSI Controls
800-223-1468 

A-T Controls Industrial Valve, Actuator and Controls Product Overview

A-T Controls in New England

A-T Controls is a global leader in the design, manufacturing, and sale of manual & automated process valves for all types of industries. A-T Controls is known for its extensive inventory and highly experienced staff that enable them to provide the customer solutions needed to fulfill most valve and actuator requirements while offering both a competitive price and the fastest turnaround in the industry.

A-T Controls products provide high-performance operation in virtually every industry, including Oil & Gas, Refining, Petrochemical, Chemical Processing, Pulp & Paper, Mining, Transportation, Food and Beverage, Pharmaceuticals, Marine, HVAC, Power, and more.

A-T Controls Products Include:

High Performance Butterfly Valves; Resilient Seated Butterfly Valves; Trunnion Mounted Ball Valves; Pig Valve Dual Valve; Isolation Valve Assemblies; Cryogenic Ball Valves; Lined Ball Valves; Tank Bottom Valves; Electric Actuators; Spring Return Electric Actuators; Fail Safe Electric Actuators; Heavy Duty Actuators; Pneumatic Scotch Yoke Actuators; Pneumatic Rack & Pinion Actuators; 180ยบ Pneumatic Actuators; Stainless Steel Pneumatic Actuators; Declutchable Gear Operators; Gear Operators; Limit Switches; Solenoids; Positioners.

DOWNLOAD THE A-T CONTROLS PRODUCT GUIDE

For more information, contact Piping Specialties, Inc / PSI Controls. Call them at 800-223-1468  of visit their website at https://psi-team.com.

Cost-effective, Non-contact Ultrasonic Level Measurement from Drexelbrook

USonic Level Transmitter

Affordable, 2-Wire Level Transmitter with the performance and features of premium, line-powered systems.

DOWNLOAD THE USONIC DATA SHEET HERE

USonics ultrasonic technology level products from the Drexelbrook family offers a cost-effective two-wire and line powered versions for the non-contact measurement of liquids and slurries for level, distance, volume, and open channel flow.   Level, size, volume, and open-channel flow measurements are easily configured via a menu-driven display.   The USonic level transmitter has a 4-20 mA two-wire HART output signal and is suitable for all Class I Div. 1, Zone, I.S., or explosion-proof locations.

For more information contact PSI Controls / Piping Specialties by calling 800-223-1468 or visit https://psi-team.com.

The Flow Safe F9000 "SurgeFlow" Liquid Surge Relief Valve

Liquid product pipelines must be protected from liquid surges. Surges are caused by pump failure, rapid block valve closing, non-return check valve hard-shutting, emergency shutdown of a tank or loading system, or even a pump coming on or tripping. The magnitude of surge pressures varies, some virtually undetectable to those severe enough to cause significant damage. These propagating waves, either increasing or decreasing rapidly, are commonly known as a transient hydraulic surge of water hammer that can cause severe damage to liquid product pipelines, vessels, flanges, valving, and associated equipment. 

The Flow Safe SurgeFlow series has been developed exclusively for liquid surge protection. These valves are extremely simple and 100% reliable. The dome cavity volume on top of the main valve piston is filled with nitrogen gas to affect the valve's proper set pressure. Dome gas pressure is set according to the characteristic piston seat-to-seal area ratio for the given valve size. This dome load forces the main valve into a closed position using a soft elastomer seat, providing a 100% tight shut-off. When surge pressure is sensed, the SurgeFlow valve piston opens immediately as the liquid fluid force acting under the piston overcomes the force from the dome gas working on the top. The piston continues to lift in proportion to the pressure surge, slightly compressing the dome gas. The closing cycle responds directly to pressure decay in the piping upstream of the SurgeFlow surge relief valve. 

SurgeFlow series valves are designed for accurate and repeatable performance. They will handle both minimum and maximum surge cases when called upon to relieve. Flow Safe suggests all surge relief valves be located nearest the point where maximum pressure can occur in the main pipeline for optimal safety purposes. 

For more information about Flow Safe products in New England, contact Piping Specialties. Call them at 800-223-1468, or visit their website at https://psi-team.com.

Thermal Flowmeters for Wastewater Applications

Kurz Flowmeter for Wastewater Applications

Wastewater treatment plants ( WWTPs) or publicly owned treatment plants (POTWs) must operate 24/7 to satisfy domestic, industrial, and storm drain sources. Sewage treatment includes eliminating pollutants from wastewater and sewage (human waste, animal waste, soaps, and detergents) to create a safe fluid waste stream that can be reintroduced safely into the ecosystem and a solid waste appropriate for reuse (usually as fertilizer). The primary applications for flow meters in wastewater treatment settings measure blower air to each pool in the aeration basin and measure digester gas flow.

Kurz Flowmeter on Digester
The aeration basin is an array of treatment pools containing aerobic bacteria that break down the pools' sewage. A blower adds the necessary dissolved oxygen (DO) to the aerobic bacteria in the aeration basin. Too little oxygen destroys the bacteria, and too much oxygen is expensive; running the aeration blower accounts for up to 60% of all wastewater power consumed.

Digester sewage is called "sludge." When bacteria is added to the digester, the sludge breaks down and releases gas. This digester gas is collected, compressed, it's excess moisture gets removed, and is then cleaned in a scrubber. The cleaned gas is sent to engines or fuel cells for power generation, boiler water heating (for steam or hot water), and excess gas burns off at the flare. Many extensive sewage treatment facilities use digester biogas to operate the plant, minimizing their grid power consumption.

Developing accurate flow rate data allows wastewater treatment facilities to more precisely manage digester production levels, enabling tighter controls on methane levels and flaring. Kurz Instruments provides a handy overview of where thermal flowmeters are applied and provide optimal performance. 

DOWNLOAD THE TECHNICAL PAPER HERE

For more information about applying flowmeters to wastewater applications in New England contact Piping Specialties. Call them at 800-223-1468 or visit their site at http://psi-team.com.

Thermal Flow Meters for Pulp & Paper Applications

Thermal Flow Meters for Pulp & Paper Applications
Trees used in paper-making go through processing in a de-barker and a chipper, where they reduce to approximately one-inch wood chips. The wood chips are pressure cooked in a digester and become pulp, refined, turned into slush, and screened. Screening drains away liquid, and the resulting pulp is then pressed and dried into the paper. Several steps within the pulp and paper-making process create emissions that must be monitored and reported.

Creating paper pulp relies on a careful balance of low-velocity air flows among the various processes. For example, the recovery boiler following the digester modulates to follow the digester load changes. Additionally, a recovery boiler uses the black liquor's chemical reaction to generate heat for the boiler. It has three airflow systems requiring tight control to create stable air flows.

Kurz Instruments provides a good application note explaining the areas where thermal flow meter uses appear in the pulp and paper production process. You can download the application note below.

DOWNLOAD THE THERMAL FLOW METERS FOR PULP & PAPER APPLICATION NOTE HERE

For more information on instrumentation for pulp and paper mills in New England, contact PSI Controls (Piping Specialties, Inc.). Call them at 800-223-1468 or visit their website at https://psi-team.com.