The Emerson TESCOM™ Anderson Greenwood H2 Series for Hydrogen Applications and Fuel Stations

The Emerson TESCOM™ Anderson Greenwood H2 Series for Hydrogen Applications and Fuel Stations

Hydrogen Fuel Stations are specialized refueling infrastructure that provides hydrogen gas for fuel cell vehicles (FCVs). These stations store and dispense hydrogen in a compressed or liquefied form, which is then used by FCVs to generate electricity through a chemical reaction with oxygen in a fuel cell stack, thus powering the vehicle.

There has been increasing interest and investment in hydrogen fuel stations and fuel cell technology across the country, driven by the goals of reducing emissions, increasing energy security, and diversifying the energy mix. Federal and state governments, private companies, and research institutions have collaborated to support developing and deploying hydrogen fuel stations and related technologies.

To boost the growth of hydrogen fuel stations, the US Department of Energy (DOE) initiated the H2@Scale initiative to advance hydrogen production, storage, distribution, and utilization technologies. This program seeks to lower hydrogen costs, increase its output from various sources (including renewables), and facilitate its adoption in multiple sectors, such as transportation, industry, and power generation.

Emerson's TESCOM™ Anderson Greenwood Instrumentation Valves H2 Series are high-pressure gas applications valves for hydrogen fueling stations and function as isolation valves. 

The H2 Valve Series employs stem seal technology, enabling consistent pressure containment and low operating torque, making it well-suited for hydrogen fuel dispensing systems. By offering a reliable, low-maintenance solution, the H2 Valve Series allows manufacturers and integrators of hydrogen fueling stations to reduce operational service expenses and potential leakage. 

The H2 Series complies with the ISO 19880.3 standard for 700 bar H70 Station Rating in hydrogen fuel station applications. Its compact, lightweight, and ergonomic design enhances installation and operational processes.


For more information, contact:
Piping Specialties, Inc.
800-223-1468

Level Measurement in the Food Processing Industry

Level Measurement in the Food Processing Industry

Level sensors and controls are crucial in industrial food processing and production facilities to ensure quality and consistency. These devices monitor and regulate the level of liquids, solids, or granular materials in containers, vessels, or silos. Here are some of the most common types of level sensors and controls used in the industry:


  1. Capacitive level sensors: These sensors detect changes in capacitance caused by the presence or absence of material (liquid or solid) in a container. They measure liquids, powders, or granular materials levels in various applications, including food and beverages.
  2. Ultrasonic level sensors: Ultrasonic sensors use sound waves to measure the distance between the sensor and the material's surface. These sensors are non-contact and used for measuring levels of liquids or solids in tanks or silos and provide the food industry with accuracy and reliability.
  3. Radar level sensors: Similar to ultrasonic sensors, radar level sensors use radio waves to measure the distance between the sensor and the material's surface. They are also non-contact and suitable for liquid and solid materials. Radar sensors are particularly useful in challenging environments with dust, vapor, or foam, making them ideal for food processing applications.
  4. Hydrostatic pressure level sensors: These sensors measure the pressure exerted by the liquid column on the sensor at a specific depth. The pressure re-calibrates to a level measurement. They are primarily used for measuring liquid levels in tanks and have broad use in the food and beverage industry.
  5. Float level sensors: Float sensors use a floating device to detect the liquid level in a container. The float's vertical or tilting movement triggers a mechanical or electrical signal indicating the liquid level. Food processing plants often use them for simple and cost-effective level measurements.
  6. Vibrating or tuning fork level sensors: These sensors use a vibrating probe or tuning fork that changes its vibration frequency when it comes into contact with a material. They can detect the presence or absence of material and provide point-level detection of liquids, powders, or granular materials.
  7. Optical level sensors: Optical sensors use infrared or visible light to detect the presence or absence of a material at a specific level. They are suitable for various materials, including liquids, powders, and solids, in food processing applications where minimum contact with the material is essential.


The choice of level sensor and control system depends on factors like the process material, the required accuracy, the process conditions, and the specific application within the food processing facility. Each technology has advantages and limitations, so careful consideration is needed to select the most suitable option for each application.


For more information, contact:
Piping Specialties, Inc.

800-223-1468