Showing posts with label Penberthy. Show all posts
Showing posts with label Penberthy. Show all posts

Jet Pump (Eductor) Theory of Operation

Jet Pump (Eductor)
Jet Pump (courtesy of Emerson Penberthy)
Also known as eductors, jet pumps operate on the principles of fluid dynamics. An operating fluid medium, which is referred to as the MOTIVE, placed under pressure, enters the inlet and is forced through the nozzle where it is converted into a high-velocity stream. This high-velocity stream decreases the pressure in the suction chamber, creating a partial vacuum that draws the suction material into the chamber where it is entrained by the motive medium. Once the SUCTION stream is drawn in, shear between the motive medium and the transported material causes both media to be intermixed and pumped out the DISCHARGE outlet, dispelled at a pressure greater than that of the SUCTION stream but lower than that of the MOTIVE. This basic principle of fluid dynamics is what makes jet pumps work.

MOTIVE:

This function is the power phase of the pumping operation. At this stage, the velocity of the motive medium increases as it passes through a nozzle. This phase of the pumping operation takes advantage of the kinetic properties of the motive medium, whether it is liquid, steam or gas. Because of this, design differences may exist within the motive connection of the jet pump.

For instance, jet pumps with liquid motives use a converging nozzle, since liquids usually cannot be compressed. On the other hand, jet pumps with gas or steam motives use converging/ diverging nozzles to achieve transsonic flow velocity. The critical flow paths of all jet pumps are machined smoothly with no abrupt turns or steps in order to produce the most efficient flow during the motive function. Without this direct flow design and smooth interior surface, the jet pump would not operate at peak efficiency.
Jet Pump (Eductor) Theory of Operation
Click for larger view.
This connection is where the pumping action takes place. The high velocity stream of the motive causes a drop in pressure in the suction chamber. This allows pressure in the suction vessel to push a liquid, steam or gas into the suction chamber of the jet pump. This, in turn, is entrained by the high-velocity motive stream emerging from the inlet nozzle.

DISCHARGE:

As the motive flow combines with the suction medium, some kinetic energy of the motive is transferred to the suction, mixing and discharging at a reduced pressure. The amount of pressure that can be recovered depends on the ratio of motive flow to suction flow, plus the amount of suction pressure built up in the suction vessel. Kinetic energy is converted back to pressure as the mixed media passes through the diverging taper and is discharged from the pump.

For more information about jet pumps and their applications, contact Piping Specialties, Inc. by calling 800-223-1468 or by visiting their web site at https://psi-team.com.

What is a Magnetic Level Gauge?

Magnetic Level Gauge
Magnetic Level Gauge (Penberthy)
Magnetic level gauges, also known as magnetic level indicators, are routinely used to provide a display of liquid level in tanks and other vessels. Their popularity stems from their high visibility from distances and non-invasive design which reduces the possibility of points and the risks of fugitive emissions.

"Mag Gauge" construction is fairly simple. A magnetic float, designed for the specific gravity of the material being measured, rides inside a vertical pipe on top of the process media. A gauge with magnetically coupled visual indicator is fastened to the pipe. As the media inside the pipe rises and falls, the visual indicator moves in the same fashion.

Magnetic level gauges are often employed in tandem with magnetostrictive, guided wave radar, or other measurement means to provide a reliable local display of liquid level, as well as an electrical signal that can be transmitted to recording instrumentation or controllers.

Magnetic level gauges features:
  • Continuous level measurement
  • Operable without electric power
  • Direct visual tank fluid level indication, regardless of tank shape or profile.
  • Wide range of operating temperature and pressure
  • Breakage resistant construction
  • Range of construction materials available to accommodate corrosive media
  • Measuring indicators, switches, and transmitters mounted externally, without contacting the medium being measured.
  • Low maintenance operation.
  • Readable level indication from greater distance than glass sight gauges.
  • Applicable to large fluid level ranges with a single instrument.
Magnetic level indicators are used widely in liquid level measurement and should be considered as a candidate for fulfilling those applications where the magnetic level gauge features fulfill the project requirements. There are many options available to customize the level indicator for each specific application. Share your application challenges with a product specialist, combining your process knowledge with their product application expertise to develop an effective solution.